Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrodes direct methanol fuel cells

Convert P, Countanceau C, Cromgneau P, Gloaguen F, Lamy C (2001) Electrodes modified by electrodeposition of CoTAA complexes as selective oxygen cathodes in a direct methanol fuel cell. J Appl Electrochem 31 945-952... [Pg.342]

A direct methanol fuel cell consists of two electrodes—a catalytic methanol anode and a catalytic oxygen cathode—separated by an ionic conduc-... [Pg.67]

PEMFC)/direct methanol fuel cell (DMFC) cathode limit the available sites for reduction of molecular oxygen. Alternatively, at the anode of a PEMFC or DMFC, the oxidation of water is necessary to produce hydroxyl or oxygen species that participate in oxidation of strongly bound carbon monoxide species. Taylor and co-workers [Taylor et ah, 2007b] have recently reported on a systematic study that examined the potential dependence of water redox reactions over a series of different metal electrode surfaces. For comparison purposes, we will start with a brief discussion of electronic structure studies of water activity with consideration of UHV model systems. [Pg.106]

Sanicharane S, Bo A, Sompalli B, Gurau B, Smotkin ES. 2002. In-situ 50 °C ETIR spectroscopy of Pt and PtRu direct methanol fuel cell membrane electrode assembly anodes. J Electrochem Soc 149 A554-A557. [Pg.462]

For isolating the overpotential of the working electrode, it is common practice to admit hydrogen to the counter-electrode (the anode in a PEMFC the cathode in a direct methanol fuel cell, DMFC) and create a so-called dynamic reference electrode. Furthermore, the overpotential comprises losses associated with sluggish electrochemical kinetics, as well as a concentration polarization related to hindered mass transport ... [Pg.518]

The same group, in a previous work, reported on the realization of a hybrid anode electrode [197]. An appreciable improvement in methanol oxidation activity was observed at the anode in direct methanol fuel cells containing Pt-Ru and Ti02 particles. Such an improvement was ascribed to a synergic effect of the two components (photocatalyst and metal catalyst). A similar behavior was also reported for a Pt-Ti02-based electrode [198]. Another recent study involved the electrolysis of aqueous solutions of alcohols performed on a Ti02 nanotube-based anode under solar irradiation [199]. [Pg.114]

The electrodes in the direct methanol fuel cell (DMFC) (i.e. the anode for oxidising the fuel and the cathode for the reduction of oxygen) are based on finely divided Pt dispersed onto a porous carbon support, and the electro-oxidation of methanol at a polycrystalline Pt electrode as a model for the DMFC has been the subject of numerous electrochemical studies dating back to the early years ot the 20th century. In this particular section, the discussion is restricted to the identity of the species that result from the chemisorption of methanol at Pt in acid electrolyte. This is principally because (i) the identity of the catalytic poison formed during the chemisorption of methanol has been a source of controversy for many years, and (ii) the advent of in situ IR culminated in this controversy being resolved. [Pg.274]

Fuel cells o fer important advantages as a power source, such as the potential for high efficiency, clean exhaust gases and quiet operation. In addition, the direct methanol fuel cell offers special benefits as a power source for transportation, such as potential high energy density, no need for a fuel reformer and a quick response. These advantages, however, have not been fully realized yet. One of the problems is the poor performance of the fiiel electrode. Even platimun, which seems the most active single element for methanol oxidation in add media, loses its electrocatalytic activity rapidly by the accumulation of adsorbed partially oxidized products. [Pg.6]

R. X. Liu, and E. S. Smotkin, Array membrane electrode assemblies for high throughput screening of direct methanol fuel cell anode catalysts, J. Electroanal. Chem. 535, 49-55 (2002). [Pg.304]

In electrochemical systems, metal meshes have been widely used as the backing layers for catalyst layers (or electrodes) [26-29] and as separators [30]. In fuel cells where an aqueous electrolyte is employed, metal screens or sheets have been used as the diffusion layers with catalyst layers coated on them [31]. In direct liquid fuel cells, such as the direct methanol fuel cell (DMFC), there has been research with metal meshes as DLs in order to replace the typical CFPs and CCs because they are considered unsuitable for the transport and release of carbon dioxide gas from the anode side of the cell [32]. [Pg.211]

R. Ghen and T. S. Zhao. A novel electrode architecture for passive direct methanol fuel cells. Electrochemistry Communications 9 (2007) 718-724. [Pg.290]

V. Gogel, T. Frey, Z. Yongsheng, et al. Performance and methanol permeation of direct methanol fuel cells Dependence on operating conditions and on electrode structure. Journal of Power Sources 127 (2004) 172-180. [Pg.294]

H. Kim, J. Oh, J. Kim, and H. Ghang. Membrane electrode assembly for passive direct methanol fuel cells. Journal of Power Sources 162 (2006) 497-501. [Pg.297]

Q. Mao, G. Sun, S. Wang, et al. Gomparative studies of configurations and preparation methods for direct methanol fuel cell electrodes. Electrochimica Acta 52... [Pg.298]

A particular version of the PEFC is the direct methanol fuel cell (DMFC). As the name implies, an aqueous solution of methanol is used as fuel instead of the hydrogen-rich gas, eliminating the need for reformers and shift reactors. The major challenge for the DMFC is the crossover of methanol from the anode compartment into the cathode compartment through the membrane that poisons the electrodes by CO. Consequently, the cell potentials and hence the system efficiencies are still low. Nevertheless, the DMFC offers the prospect of replacing batteries in consumer electronics and has attracted the interest of this industry. [Pg.49]

One energy application of methanol in its early stages of development is the direct methanol fuel cell (DMFC). A fuel cell is essentially a battery in which the chemicals are continuously supplied from an external source. A common fuel cell consists of a polymer electrolyte sandwiched between a cathode and anode. The electrodes are porous carbon rods with platinum... [Pg.176]

Fig. 13.27. Potential vs. current density plots for state-of-the-art fuel cells, o, proton exchange membrane fuel cell , solid oxide fuel cell , pressurized phosphonic acid fuel cell (PAFC) a, direct methanol fuel cell, direct methanol PAFC , alkaline fuel cell. (Reprinted from M. A. Parthasarathy, S. Srinivasan, and A. J. Appleby, Electrode Kinetics of Oxygen Reduction at Carbon-Supported and Un-supported Platinum Microcrystal-lite/Nafion Interfaces, J. Electroanalytical Chem. 339 101-121, copyright 1992, p. 103, Fig. 1, with permission from Elsevier Science.)... Fig. 13.27. Potential vs. current density plots for state-of-the-art fuel cells, o, proton exchange membrane fuel cell , solid oxide fuel cell , pressurized phosphonic acid fuel cell (PAFC) a, direct methanol fuel cell, direct methanol PAFC , alkaline fuel cell. (Reprinted from M. A. Parthasarathy, S. Srinivasan, and A. J. Appleby, Electrode Kinetics of Oxygen Reduction at Carbon-Supported and Un-supported Platinum Microcrystal-lite/Nafion Interfaces, J. Electroanalytical Chem. 339 101-121, copyright 1992, p. 103, Fig. 1, with permission from Elsevier Science.)...
In a fuel cell, inductance is usually caused by the adsorbed species on the electrode surface. For example, in a direct methanol fuel cell, adsorption of CO on the anode catalyst can at low frequencies result in an inductance loop. [Pg.140]

Equivalent circuits for the catalyst layer are similar to those for porous electrodes, where charge-transfer resistance, capacitance, and Warburg resistance should be considered. The catalyst layer can be conceived of as a whole uniform unit or as a non-uniform circuit. In the case of a uniform unit, the equivalent circuits are similar to the modified ones discussed in Section 4.2.2 2, and the equations in that section apply. In many cases, such as in the presence of adsorbents, the surface is covered by the adsorbed species. For example, in direct methanol fuel cells and in H2/air fuel cells, CO adsorption should be considered. One example is illustrated in Ciureanu s work [7], as shown in Figure 4.31. [Pg.180]

For EIS measurements of a direct methanol fuel cell (DMFC), the anode is supplied with an aqueous solution of methanol at a concentration such as 1 M and using controlled flow rates. The cathode is operated on either air, oxygen, or hydrogen, with controlled flow rate and pressure [43], In order to measure the anode EIS, the DMFC is fed with hydrogen gas instead of air or oxygen, to eliminate the contributions of the cathode. This cathode is normally denoted as a dynamic hydrogen electrode (DHE). Thus, the anode impedance spectra between the anode and the DHE can be obtained in a complete fuel cell. [Pg.235]

Figure 3.6. Impedance spectra for negative electrode half of direct methanol fuel cell. Figure 3.6. Impedance spectra for negative electrode half of direct methanol fuel cell.
Figure 3.53. IV-curve and power density for direct methanol fuel cell with electrodes of carbon black coated on a carbon paper substrate, with Pt-Ru (ratio 1 1) on the negative electrode side and Pt alone on the positive electrode side, both with Nafion intrusions and hot-pressed on a Nafion-112 membrane. The 2-mol methanol solution was fed at a rate of 21 ml min and at the other side non-humidified air at a rate of 700 ml/min. The temperature was 85°C. (From G. Lu and C. Wang (2004). Electrochemical and flow characterization of a direct methanol fuel cell. /. Power Sources, in press. Used with permission from Elsevier.)... Figure 3.53. IV-curve and power density for direct methanol fuel cell with electrodes of carbon black coated on a carbon paper substrate, with Pt-Ru (ratio 1 1) on the negative electrode side and Pt alone on the positive electrode side, both with Nafion intrusions and hot-pressed on a Nafion-112 membrane. The 2-mol methanol solution was fed at a rate of 21 ml min and at the other side non-humidified air at a rate of 700 ml/min. The temperature was 85°C. (From G. Lu and C. Wang (2004). Electrochemical and flow characterization of a direct methanol fuel cell. /. Power Sources, in press. Used with permission from Elsevier.)...
Figure 3.54. Direct methanol fuel cell designed for passive operation (no forced flows), with two membrane-electrode assemblies MEA) and a central fuel container. Figure 3.54. Direct methanol fuel cell designed for passive operation (no forced flows), with two membrane-electrode assemblies MEA) and a central fuel container.

See other pages where Electrodes direct methanol fuel cells is mentioned: [Pg.609]    [Pg.366]    [Pg.160]    [Pg.289]    [Pg.4]    [Pg.120]    [Pg.45]    [Pg.151]    [Pg.228]    [Pg.230]    [Pg.232]    [Pg.349]    [Pg.386]    [Pg.388]    [Pg.443]    [Pg.444]    [Pg.31]    [Pg.48]    [Pg.248]    [Pg.424]    [Pg.398]    [Pg.3846]    [Pg.126]    [Pg.172]   


SEARCH



Direct fuel cell

Direct methanol fuel cells cathode electrode

Direct methanol fuel cells membrane electrode assembly

Electrode Fuel Cell

Electrode cells

Fuel cells direct methanol

Fuel direction

Fuel electrode

Fuel methanol

Methanol Fuel Cell Electrodes

Methanol fuel cells

© 2024 chempedia.info