Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrode cathode materials

As anode and cathode of the tube have to share the same vacuum envelope, and the insulating material has to insulate the high tension between these respective electrodes, the material is always part of the vacuum envelope of the tube. Therefore, the insulator has to be vacuum tight and must be able to carry the atmospheric pressure, which loads this envelope. [Pg.533]

Selection. The widely used cathode materials iaclude Hg, Pb, Al, Zn, Ni, Fe, Cu, Sn, Cd, and C. Because of mechanical iaconvenience, mercury is not an attractive electrode material for large cells. The preferred material is lead or an amalgam. Because Pb is soft and has a tendency to deform, however, it presents some mechanical problems. The problems can be overcome by hot dip or electroplating on steel, copper, or other rigid base material. [Pg.86]

This presentation reports some studies on the materials and catalysis for solid oxide fuel cell (SOFC) in the author s laboratory and tries to offer some thoughts on related problems. The basic materials of SOFC are cathode, electrolyte, and anode materials, which are composed to form the membrane-electrode assembly, which then forms the unit cell for test. The cathode material is most important in the sense that most polarization is within the cathode layer. The electrolyte membrane should be as thin as possible and also posses as high an oxygen-ion conductivity as possible. The anode material should be able to deal with the carbon deposition problem especially when methane is used as the fuel. [Pg.95]

Further, tungsten oxysulfide films, WOyS, have shown promising behavior as positive electrodes in microbatteries, unlike WS2 that is not suitable as cathode in lithium cells. Using amorphous thin films of WO1.05S2 and WO1.35S2.2 in the cell Li/LiAsFe, 1 M ethyl-methyl sulfone (EMS)/W03,Sz, Martin-Litas et al. [80] obtained current densities up to 37 xA cm between 1.6 and 3 V. In these cathode materials, 0.6 and 0.8 lithium per formula unit, respectively, could be intercalated and de-intercalated reversibly. [Pg.329]

Faradaic yields and the composition of reaction products are influenced mainly by the nature of the cathode material. Metallic electrodes used in aqueous solutions can be classified into four groups according to the nature of the principal reaction product ... [Pg.292]

Solid alkaline membrane fuel cells (SAMECs) can be a good alternative to PEMFCs. The activation of the oxidation of alcohols and reduction of oxygen occurring in fuel cells is easier in alkaline media than in acid media [Wang et al., 2003 Yang, 2004]. Therefore, less Pt or even non-noble metals can be used owing to the improved electrode kinetics. Eor example, Ag/C catalytic powder can be used as an efficient cathode material [Demarconnay et al., 2004 Lamy et al., 2006]. It has also... [Pg.366]

Cathode material the hydrogen overvoltage value varies from one cathode material to another. It can be quite high at certain electrodes made of lead and tin. [Pg.685]

This technique is applied to mixtures of metal ions in an acidic solution for the purpose of electroseparation only the metal ions with a standard reduction potential above that of hydrogen are reduced to the free metal with deposition on the cathode, and the end of the reduction appears from the continued evolution of hydrogen as long as the solution remains acidic. Considering the choice of the cathode material and the nature of its surface, it must be realized that the method is disturbed if a hydrogen overpotential occurs in that event no hydrogen is evolved and as a consequence metal ions with a standard reduction potential below that of hydrogen will still be reduced a classic example is the electrodeposition of Zn at an Hg electrode in an acidic solution. [Pg.229]

Weaver [40] studied alternate cathode materials at 650 °C, finding several that performed well. Steady-state polarization on Ni, Co and Fe porous electrodes operating as cathodes in a MCFC, with a standard (Li/K)2 C03 tile is shown in Figs. 30-32. Note that the oxidant gas fed to these cathodes is, in normal MCFC operation, the fuel, composed of 32.5% H2, 17.5% COz, 17.5% H20, the balance N2. Polarizations were first taken with this clean gas where the only reaction can be Eq. (35). After steady-state was attained, 0.65% H2S was added and sufficient time allowed for the electrode to convert to the sulfides. After 24 hours, the outlet H2S reached the inlet level and polarizations were measured. Note in Figs. 30-32, that the performance with H2S is significantly improved over the clean gas. (The Ni sample was a commercial (Gould) MCFC electrode the Co and Fe were pressed from powders. Each gas was 8 sq cm in superficial area). The improvement is probably due to a catalytic mechanism involving sulfur interactions with the electrode, as, for Co ... [Pg.232]

Instead of mercury, Ito et a/.18 examined systematically some sp metals, such as Zn Pb, Sn, In, and Cd (5N purity), as the cathode materials for C02 reduction (Fig. 1). Using an In electrode at 3.9 mA/cm2, the highest current efficiency (92%) for formic acid production was obtained in an aqueous Li2C03 solution the potentials at which C02 was reduced at an In electrode were ca. 400 mV less negative than those at an Hg electrode. [Pg.329]

Ito et a/.18 supported the above reaction pathways for various cathode materials, such as In, Sn, Cd, and Pb, from the similarity in Tafel slopes. Hori and Suzuki46 verified the above mechanism in various aqueous solutions on Hg. Russell et al.19 also agreed with the above mechanism. Adsorbed CO J anion radical was found as an intermediate at a Pb electrode using modulated specular reflectance spectroscopy.47 This intermediate underwent rapid chemical reaction in an aqueous solution the rate constant for protonation was found to be 5.5 M-1 s-1, and the coverage of the intermediate was estimated to be very low (0.02). [Pg.337]

The large-scale spread of DAFCs is closely related to the development of efficient anodic and cathodic materials, characterized by very fast electrochemical kinetics, stability at the high current densities in alkaline environments and modest cost. This objective requires cathodes without noble metals and anodes with very low amounts of noble metals. In order to improve the cheapness and sustainability of the processes described above, the most accepted opinion is the possibility of using solar light by means of the introduction of Ti02, pure or doped, into the electrode material formulation. Figure 4.15 shows a typical laboratory-scale photoelectrocatalytic reactor. [Pg.113]

Carbon-coating is an effective way to improve the performance of electrode materials for lithium batteries, particularly with graphites [11-14], It is also known to aid in the surface conductivity for LiFeP04 as a cathode material [27], There are many ways to coat powders with carbon, but in this study, we have chosen to decompose a hydrocarbon vapor of propylene in a nitrogen carrier gas at a moderate temperature of 700 °C. Criteria for using this process include a material that is stable at this temperature and under a reducing environment. [Pg.377]

The seven papers in Chapter 6 are focused on cathode materials for lithium and lithium-ion batteries. Carbon is used as a conductive additive in composite electrodes for batteries. The type of carbon and the amount can have a large effect on the electrochemical performance of the electrode. [Pg.451]

The electrochemical behavior of thin-film oxide-hydroxide electrodes containing chromium, nickel and cobalt compounds was investigated. Experimental results have shown that such compounds can be successfully used as active cathodic materials in a number of emerging primary and secondary battery applications. [Pg.493]

Thin-film electrodes have promise in the development of flexible power sources (primary and secondary). It must be taken into account that change in cathodic material crystal lattice must not be over 20% as a result of intercalation of Li+, Na+ or FT [4], The electrodes must be chemically active and have both electron and ion conductivity. In connection with these... [Pg.494]


See other pages where Electrode cathode materials is mentioned: [Pg.612]    [Pg.91]    [Pg.167]    [Pg.128]    [Pg.86]    [Pg.612]    [Pg.91]    [Pg.167]    [Pg.128]    [Pg.86]    [Pg.37]    [Pg.113]    [Pg.504]    [Pg.87]    [Pg.129]    [Pg.1003]    [Pg.191]    [Pg.226]    [Pg.95]    [Pg.597]    [Pg.599]    [Pg.71]    [Pg.84]    [Pg.325]    [Pg.327]    [Pg.330]    [Pg.334]    [Pg.441]    [Pg.515]    [Pg.1003]    [Pg.1315]    [Pg.1318]    [Pg.342]    [Pg.186]    [Pg.352]    [Pg.246]    [Pg.369]    [Pg.51]    [Pg.56]    [Pg.146]   
See also in sourсe #XX -- [ Pg.141 ]




SEARCH



Cathodic electrode

Cathodic materials

Electrode cathode

Electrode material

Electrodes cathode catalyst materials

How to Measure Surface Reactions of Cathode Materials and Relevant Composite Electrodes

© 2024 chempedia.info