Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrochemistry process

For further details the reader is referred to the excellent paper by Chaussard et al. [149] Use of sacrificial anodes in electrochemical functionalization of organic halides and the paper by Silvestri et al. [178] Use of sacrificial anodes in synthetic electrochemistry. Processes involving carbon dioxide . [Pg.172]

Mechano-Electrochemistry Process of Galena in Different Grinding Media... [Pg.208]

There are many reviews of the vast literature on CPs, including 15 books compilations in various encyclopedias and an excellent overview by Kanatzidis. They cover all aspects of the theory, energy band structure, chain structure, morphology, comparison of conductivities with metals, semiconductors and insulators, doping, synthesis and characterization, electrochemistry, processing, and potential... [Pg.527]

Research of surface electrochemistry processes on metallic implants has focused mainly on corrosion processes and its prevention. These processes are highly sensitive to shape and surface defects. Corrosion studies on bare metals are available, although systematic studies of specific devices under conditions of mechanical... [Pg.408]

Abstract There are noteworthy developments in nanotechnology and its relevance to the energy field. Fuel cells especially benefit from electrodes and membrane electrolytes with nanostructured and therefore enlarged surfaces. Fuel cells also derive benefits from the development of nanoparticles and nanombes for catalytic application, allowing also study of the molecular electrochemical behaviour. In this chapter we describe the impact of nanotechnology in the performance of the different components of the fuel cell as well as the impact of nanotechnology in the electrochemistry process. [Pg.151]

Electrochemistry is concerned with the study of the interface between an electronic and an ionic conductor and, traditionally, has concentrated on (i) the nature of the ionic conductor, which is usually an aqueous or (more rarely) a non-aqueous solution, polymer or superionic solid containing mobile ions (ii) the structure of the electrified interface that fonns on inunersion of an electronic conductor into an ionic conductor and (iii) the electron-transfer processes that can take place at this interface and the limitations on the rates of such processes. [Pg.559]

The molecular-level observation of electrochemical processes is another unique application of STM [53, 54]. There are a number of experimental difficulties involved in perfonning electrochemistry with a STM tip and substrate, although many of these have been essentially overcome in the last few years. [Pg.1685]

The measurement of the current for a redox process as a fiinction of an applied potential yields a voltaimnogram characteristic of the analyte of interest. The particular features, such as peak potentials, halfwave potentials, relative peak/wave height of a voltaimnogram give qualitative infonnation about the analyte electrochemistry within the sample being studied, whilst quantitative data can also be detennined. There is a wealth of voltaimnetric teclmiques, which are linked to the fonn of potential program and mode of current measurement adopted. Potential-step and potential-sweep... [Pg.1926]

The combination of electrochemistry and photochemistry is a fonn of dual-activation process. Evidence for a photochemical effect in addition to an electrochemical one is nonnally seen m the fonn of photocurrent, which is extra current that flows in the presence of light [, 89 and 90]. In photoelectrochemistry, light is absorbed into the electrode (typically a semiconductor) and this can induce changes in the electrode s conduction properties, thus altering its electrochemical activity. Alternatively, the light is absorbed in solution by electroactive molecules or their reduced/oxidized products inducing photochemical reactions or modifications of the electrode reaction. In the latter case electrochemical cells (RDE or chaimel-flow cells) are constmcted to allow irradiation of the electrode area with UV/VIS light to excite species involved in electrochemical processes and thus promote fiirther reactions. [Pg.1945]

In order to circumvent this problem, there has been significant activity directed toward the search for a less environmentally toxic and more selective oxidizing agent than chromium. For example, Hoechst has patented a process which uses organorhenium compounds. At a 75% conversion, a mixture of 86% of 2-methyl-l,4-naphthoquinone and 14% 6-methyl-l,4-naphthoquinone was obtained (60). Ceric sulfate (61) and electrochemistry (62,63) have also been used. [Pg.155]

Electrochemical systems are found in a number of industrial processes. In addition to the subsequent discussions of electrosynthesis, electrochemical techniques are used to measure transport and kinetic properties of systems (see Electroanalyticaltechniques) to provide energy (see Batteries Euel cells) and to produce materials (see Electroplating). Electrochemistry can also play a destmctive role (see Corrosion and corrosion control). The fundamentals necessary to analyze most electrochemical systems have been presented. More details of the fundamentals of electrochemistry are contained in the general references. [Pg.67]

The processes of cathodic protection can be scientifically explained far more concisely than many other protective systems. Corrosion of metals in aqueous solutions or in the soil is principally an electrolytic process controlled by an electric tension, i.e., the potential of a metal in an electrolytic solution. According to the laws of electrochemistry, the reaction tendency and the rate of reaction will decrease with reducing potential. Although these relationships have been known for more than a century and although cathodic protection has been practiced in isolated cases for a long time, it required an extended period for its technical application on a wider scale. This may have been because cathodic protection used to appear curious and strange, and the electrical engineering requirements hindered its practical application. The practice of cathodic protection is indeed more complex than its theoretical base. [Pg.582]

Concern for the conservation of energy and materials maintains high interest in catalytic and electrochemistry. Oxygen in the presence of metal catalysts is used in CUPROUS ION-CATALYZED OXIDATIVE CLEAVAGE OF AROMATIC o-DIAMINES BY OXYGEN (E,Z)-2,4-HEXADIENEDINITRILE and OXIDATION WITH BIS(SALI-CYLIDENE)ETHYLENEDIIMINOCOBALT(II) (SALCOMINE) 2,6-DI-important industrial method, is accomplished in a convenient lab-scale process in ALDEHYDES FROM OLEFINS CYCLOHEXANE-CARBOXALDEHYDE. An effective and useful electrochemical synthesis is illustrated in the procedure 3,3,6,6-TETRAMETHOXY-1,4-CYCLOHEX ADIENE. ... [Pg.129]

Of these, the most extensive use is to identify adsorbed molecules and molecular intermediates on metal single-crystal surfaces. On these well-defined surfaces, a wealth of information can be gained about adlayers, including the nature of the surface chemical bond, molecular structural determination and geometrical orientation, evidence for surface-site specificity, and lateral (adsorbate-adsorbate) interactions. Adsorption and reaction processes in model studies relevant to heterogeneous catalysis, materials science, electrochemistry, and microelectronics device failure and fabrication have been studied by this technique. [Pg.443]

In contrast to many other surface analytical techniques, like e. g. scanning electron microscopy, AFM does not require vacuum. Therefore, it can be operated under ambient conditions which enables direct observation of processes at solid-gas and solid-liquid interfaces. The latter can be accomplished by means of a liquid cell which is schematically shown in Fig. 5.6. The cell is formed by the sample at the bottom, a glass cover - holding the cantilever - at the top, and a silicone o-ring seal between. Studies with such a liquid cell can also be performed under potential control which opens up valuable opportunities for electrochemistry [5.11, 5.12]. Moreover, imaging under liquids opens up the possibility to protect sensitive surfaces by in-situ preparation and imaging under an inert fluid [5.13]. [Pg.280]

Shock phenomena, such as shock-induced polarization, have no known counterpart in other environments. In that regard, the distinctive behaviors present the greatest opportunity to determine details of shock-compression processes. Unexplored phenomena, such as electrochemistry [88G02], offer considerable potential for developing improved descriptions of shock-compressed matter. [Pg.198]

Pulsed amperometric detection (PAD), introduced by Johnson and LaCourse (64, 65) has greatly enhanced the scope of liquid chromatography/electrochemistry (66). This detection mode overcomes the problem of loss of activity of noble metal electrodes associated with the fixed-potential detection of compounds such as carbohydrates, alcohols, amino acids, or aldehydes. Pulsed amperometric detection couples tlie process of anodic detection with anodic cleaning and cathodic reactivation of a noble metal electrode, thus assuring a continuously cleaned and active... [Pg.92]


See other pages where Electrochemistry process is mentioned: [Pg.293]    [Pg.350]    [Pg.293]    [Pg.262]    [Pg.293]    [Pg.350]    [Pg.293]    [Pg.262]    [Pg.1949]    [Pg.735]    [Pg.737]    [Pg.173]    [Pg.201]    [Pg.67]    [Pg.83]    [Pg.86]    [Pg.103]    [Pg.119]    [Pg.456]    [Pg.1120]    [Pg.294]    [Pg.299]    [Pg.841]    [Pg.1081]    [Pg.1154]    [Pg.1229]    [Pg.233]    [Pg.446]    [Pg.624]    [Pg.125]    [Pg.224]    [Pg.249]    [Pg.219]   
See also in sourсe #XX -- [ Pg.250 , Pg.251 ]




SEARCH



Corrosion electrochemistry anodic process

Corrosion electrochemistry cathodic process

Corrosion electrochemistry formation processes

Corrosion electrochemistry practical processes

Electrochemistry anodic processes

Electrochemistry cathodic processes

Electrochemistry commercial electrolytic processes

Electrochemistry commercial processes

Electrochemistry mineral processing

Electrochemistry of the Chlor-Alkali Process

Process productivity, improving electrochemistry

Solid-state electrochemistry kinetics, process

© 2024 chempedia.info