Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrochemically Reflectance Spectroscopy

Electrochemical impedance spectroscopy leads to information on surface states and representative circuits of electrode/electrolyte interfaces. Here, the measurement technique involves potential modulation and the detection of phase shifts with respect to the generated current. The driving force in a microwave measurement is the microwave power, which is proportional to E2 (E = electrical microwave field). Therefore, for a microwave impedance measurement, the microwave power P has to be modulated to observe a phase shift with respect to the flux, the transmitted or reflected microwave power APIP. Phase-sensitive microwave conductivity (impedance) measurements, again provided that a reliable theory is available for combining them with an electrochemical impedance measurement, should lead to information on the kinetics of surface states and defects and the polarizability of surface states, and may lead to more reliable information on real representative circuits of electrodes. We suspect that representative electrical circuits for electrode/electrolyte interfaces may become directly determinable by combining phase-sensitive electrical and microwave conductivity measurements. However, up to now, in this early stage of development of microwave electrochemistry, only comparatively simple measurements can be evaluated. [Pg.461]

Of special Interest as O2 reduction electrocatalysts are the transition metal macrocycles In the form of layers adsorptlvely attached, chemically bonded or simply physically deposited on an electrode substrate Some of these complexes catalyze the 4-electron reduction of O2 to H2O or 0H while others catalyze principally the 2-electron reduction to the peroxide and/or the peroxide elimination reactions. Various situ spectroscopic techniques have been used to examine the state of these transition metal macrocycle layers on carbon, graphite and metal substrates under various electrochemical conditions. These techniques have Included (a) visible reflectance spectroscopy (b) laser Raman spectroscopy, utilizing surface enhanced Raman scattering and resonant Raman and (c) Mossbauer spectroscopy. This paper will focus on principally the cobalt and Iron phthalocyanlnes and porphyrins. [Pg.535]

It is only since 1980 that in situ spectroscopic techniques have been developed to obtain identification of the adsorbed intermediates and hence of reliable reaction mechanisms. These new infrared spectroscopic in situ techniques, such as electrochemically modulated infrared reflectance spectroscopy (EMIRS), which uses a dispersive spectrometer, Fourier transform infrared reflectance spectroscopy, or a subtractively normalized interfacial Fourier transform infrared reflectance spectroscopy (SNIFTIRS), have provided definitive proof for the presence of strongly adsorbed species (mainly adsorbed carbon monoxide) acting as catalytic poisons. " " Even though this chapter is not devoted to the description of in situ infrared techniques, it is useful to briefly note the advantages and limitations of such spectroscopic methods. [Pg.76]

EMIRS electrochemically modulated infrared reflectance spectroscopy... [Pg.467]

In the early work of Bewick and Robinson (1975), a simple monochromator system was used. This is called a dispersive spectrometer. In the experiment the electrode potential was modulated between two potentials, one where the adsorbed species was present and the other where it was absent. Because of the thin electrolyte layer, the modulation frequency is limited to a few hertz. This technique is referred to as electrochemically modulated infrared reflectance spectroscopy (EMIRS). The main problem with this technique is that data acquisition time is long. So it is possible for changes to occur on the electrode surface. [Pg.504]

K. and Enyo, M. (1989) Surface species produced on Pt electrodes during HCHO oxidation in sulfuric add solution as studied by infrared reflection-absorption spectroscopy (IRRAS) and differential electrochemical mass spectroscopy (OEMS)./. Electroanal. Chem., 258, 219-225. [Pg.101]

Beden B, Bewick A, Lamy C. 1983. A study by electrochemically modulated infrared reflectance spectroscopy of the electrosorption of formic acid at a platinum electrode. J Electroanal Chem 148 147-160. [Pg.199]

Stamenkovic V, Arenz M, Ross PN, Markovic NM. 2004. Temperature-induced deposition method for anchoring metallic nanoparticles onto reflective substrates for in situ electrochemical infrared spectroscopy. J Phys Chem B 108 17915-17920. [Pg.268]

Vigier F, Coutanceau C, Hahn F, Belgsir EM, Lamy C. 2004a. On the mechanism of ethanol electro-oxidation on Pt and PtSn catalysts Electrochemical and in situ IR reflectance spectroscopy studies. J Electroanal Chem 563 81-89. [Pg.372]

Ean Q, Pu C, Ley KL, Smotkin ES. 1996. In situ FTIR-diffuse reflectance spectroscopy of the anode surface in a direct methanol fuel cell. J Electrochem Soc 143 L21-L23. [Pg.456]

The most important methods used in in-situ studies of electrode surfaces are various modifications of reflection spectroscopy in the ultraviolet through infrared regions. For electrochemical applications, the specular reflection (at smooth electrode surfaces) is much more important than the diffuse reflection from matt surfaces. The reflectivity, R, of the electrode/ electrolyte interface is defined by ... [Pg.342]

In recent years,3 4 however, there has been renewed interest in the study of the electrode/solution interface due in part to the development of new spectroscopic techniques such as surface-enhanced Raman spectroscopy,5-7 electrochemically modulated infrared reflectance spectroscopy and related techniques,8,9 second-harmonic generation,10-12 and others which give information about the identity and orientation of molecular species in the interfacial... [Pg.265]

A long disputed issue of the nature of strongly bound species in this reaction has been recently revived with the vibrational spectroscopy studies of Bewick et al. (30) using EMIRS technique and of Kunimatsu and Kita (31) using polarization modulation IR-reflection-absorption technique. These data indicated the only CO is a strongly bound intermediate. Heitbaum et al. (32) on the other hand advocate COH, and most recently HCO (33), as the poisoning species on the basis of differential electrochemical mass spectroscopy (DEMS). [Pg.509]

The infrared surface spectroscopic analysis was applied only to gas-solid surfaces imtil Bewick et al. succeeded ) to measure an in situ infiored spectra on electrode surfaces in electrochemical systems. They controlled the electrode potential and obtained the difference spectra between the measured and the reference potentials (EMIRS Electrochemically Modulated Infrared Reflectance Spectroscopy). This technique is employed in this theses also and discussed in detail in a later section. [Pg.113]

In this section, two in situ electrochemical techniques are presented, namely, infrared-reflection spectroscopy (IRS) and electrochemical methods. Examples are given in Fig. 6.21. [Pg.80]

The bandgap of a semiconductor can also be determined photo-electrochemically [1, 2, 5, 7, 8], which is based on the fact that the wavelength corresponding to the onset of photocurrent agrees well with the optical absorption edge. For colloids and powders, diffuse reflectance spectroscopy method has been used to characterize the hematite bandgap [4]. [Pg.92]

Figure 15 A cell for in situ single internal reflectance spectroscopy (1) working electrode—an NaCl optical window covered by a thin Pt deposited layer, (2) reference electrode, (3) counterelectrode, (4) polyethylene cell body, (5) space for solution, (6) electrical contact to the working electrode—a thin nickel foil, (7) O ring, (8) polyethylene cover, (9) brass holder for the optical window, (10) bolts that hold the cell [44]. (Reprinted with copyright from The Electrochemical Society Inc.)... Figure 15 A cell for in situ single internal reflectance spectroscopy (1) working electrode—an NaCl optical window covered by a thin Pt deposited layer, (2) reference electrode, (3) counterelectrode, (4) polyethylene cell body, (5) space for solution, (6) electrical contact to the working electrode—a thin nickel foil, (7) O ring, (8) polyethylene cover, (9) brass holder for the optical window, (10) bolts that hold the cell [44]. (Reprinted with copyright from The Electrochemical Society Inc.)...
The second meaning of the word circuit is related to electrochemical impedance spectroscopy. A key point in this spectroscopy is the fact that any -> electrochemical cell can be represented by an equivalent electrical circuit that consists of electronic (resistances, capacitances, and inductances) and mathematical components. The equivalent circuit is a model that more or less correctly reflects the reality of the cell examined. At minimum, the equivalent circuit should contain a capacitor of - capacity Ca representing the -> double layer, the - impedance of the faradaic process Zf, and the uncompensated - resistance Ru (see -> IRU potential drop). The electronic components in the equivalent circuit can be arranged in series (series circuit) and parallel (parallel circuit). An equivalent circuit representing an electrochemical - half-cell or an -> electrode and an uncomplicated electrode process (-> Randles circuit) is shown below. Ic and If in the figure are the -> capacitive current and the -+ faradaic current, respectively. [Pg.101]

Palladium nanoparticles (nm-Pd) were synthesized by ship-in-a-bottle technique in supercages of NaA zeolite. The behaviors of electrodes of thin film of nm-Pd accommodated in NaA zeolite were characterized by cyclic voltammetry. The results illustrated that the nm-Pd possess particular properties for hydrogen reaction, i.e. in contrast to hydrogen absorption on massive palladium electrode, the surface processes of hydrogen adsorption-desorption become the dominant reaction on electrodes of thin film of nm-Pd. The processes of adsorption and desorption of carbon monoxide on the electrodes were studied using in situ electrochemical FTIR reflection spectroscopy. It has been revealed that in comparison with CO adsorbed on a massive Pd electrode, the IR absorption of CO adsorbed on nm-Pd particles accommodated in NaA zeolite has been enhanced to about 36 times. [Pg.571]

We will first describe briefly the main experimental techniques coupled with electrochemical methods Infrared Reflectance Spectroscopy (IRS), Electrochemical Quartz Crystal Microbalance (EQCM), Differential Electrochemical Mass Spectrometry (DEMS), Chemical Radiotracers and High Performance Liquid Chromatography (HPLC). [Pg.399]

The first in situ Infrared Reflectance Spectroscopy rmder electrochemical control of the working electrode in a three-electrode cell was realized by Beden et al. using the so-called Electrochemical-ly Modulated Infrared Reflectance Spectroscopy (EMIRS). Experimental details of this external reflection technique are fully described in text books. °... [Pg.399]

The electric current response, in terms of peak position, multiplicity and intensity, of CO stripping voltammograms recorded on supported platinum nanoparticles is heavily discussed in the literature. The electro-oxidation of CO is a complex reaction, as it is evidenced by the multiplicity of the voltammetric oxidation peaks which are recorded in a relatively narrow potential range. This multiplicity of peak was also observed for continuous bulk CO oxidation and studied using electrochemical and UV-visible potential modulated reflectance spectroscopy, and was shown to be dependent on the CO admission potential. For example, the vol-tammogram of CO stripping presented in Fig. 2, recorded at a Pt (40 wt %) /C catalyst prepared via the water in oil method,displays at least three oxidation peaks a prepeak centered close to 0.6 V, a second peak well defined close to 0.755 V and a third one close to 0.820 V vs. RHE. Several models were proposed to explain the multiplicity of peak. [Pg.407]


See other pages where Electrochemically Reflectance Spectroscopy is mentioned: [Pg.224]    [Pg.602]    [Pg.550]    [Pg.217]    [Pg.341]    [Pg.344]    [Pg.345]    [Pg.346]    [Pg.341]    [Pg.565]    [Pg.169]    [Pg.366]    [Pg.35]    [Pg.932]    [Pg.68]    [Pg.40]    [Pg.42]    [Pg.275]    [Pg.249]    [Pg.428]    [Pg.633]    [Pg.295]    [Pg.571]    [Pg.572]    [Pg.393]    [Pg.253]    [Pg.406]   


SEARCH



Electrochemical spectroscopy

Reflectance spectroscopy

Reflection spectroscopy

Reflectivity spectroscopy

© 2024 chempedia.info