Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Shuttle electrochemical

One frequently encounters more complex cases where one cannot consider the phenomena at the two electrodes as independent. When products resulting from one electrode intervene at the other electrode, then this amounts to an ionic short circuit. One also refers to an electrochemical shuttle. [Pg.106]

Another synthetic strategy is based on self-assembly driven by molecular recognition between complementary TT-donors and 7T-acceptors. Examples include the synthesis of catenanes and rotaxanes that can act as controUable molecular shuttles (6,236). The TT-donors in the shuttles are located in the dumb-beU shaped component of the rotaxane and the 7T-acceptors in the macrocycHc component, or vice versa. The shuttles may be switched by chemical, electrochemical, or photochemical means. [Pg.209]

Mediated electrolyses make use of electron transfer mediators PjQ that shuttle electrons between electrodes and substrates S, avoiding adverse effects encountered with the direct heterogeneous reaction of substrates at electrode surfaces (Scheme 6). In recent years this mode of electrochemical synthesis has been widely studio and it is becoming increasingly well understood. A review is given in vol 1 of the present electrochemistry series... [Pg.61]

There seems to be an opportunity to extend the electrochemical process to direct membrane transport that is, with electrodes plated on either side of a facilitated-transport membrane similar to that of Johnson [24]. The shuttling action of the carrier (Fig. 9) could then be brought about by electrochemical reduction and oxidation instead of pressure difference. [Pg.219]

The sensitizers display a crucial role in harvesting of sunlight. To trap solar radiation efficiently in the visible and the near IR region of the solar spectrum requires engineering of sensitizers at a molecular level (see Section 9.16.3).26 The electrochemical and photophysical properties of the ground and the excited states of the sensitizer have a significant influence on the charge transfer (CT) dynamics at the semiconductor interface (see Section 9.16.4). The open-circuit potential of the cell depends on the redox couple, which shuttles between the sensitizer and the counter electrode (for details see Section 9.16.5). [Pg.721]

XH NMR was as fast as 300000 times a second. It is interesting if the shuttling speed can be controlled by light or an electrochemical method [96]. Bissell et al. [97] obtained the molecular shuttle shown in Fig. 29, in which benzidine and bisphenol units act as the stations. At 229 K the tetracation bead was found to stay on the benzidine side at a probability of 86%, but when the compound was treated with an acid or oxidized electrochemically it turned out that the bead can move to the bisphenol side at a higher probability. [Pg.173]

Electrochemical cofactor reduction can be achieved by direct reduction of the cofactor at the electrode surface, or indirectly by using a mediator molecule to shuttle electrons between the electrode and the cofactor. For details on the direct approach the reader is referred elsewhere [31, 32], since here no transition-metal complexes are involved. One point to be considered in the direct approach is the issue of selectivity. Whereas direct cofactor oxidation can be successfully achieved, special care must be taken to produce enzyme active reduced cofactors by direct electrolysis. [Pg.1475]

Electrochemical communication between electrode-bound enzyme and an electrode was confirmed by such electrochemical characterizations as differential pulse voltammetxy. As shown in Fig. 11, reversible electron transfer of molecularly interfaced FDH was confirmed by differential pulse voltammetry. The electrochemical characteristics of the polypyrrole interfaced FDH electrode were compared with those of the FDH electrode. The important difference between the electrochemical activities of these two electrodes is as follows by the employment of a conductive PP interface, the redox potential of FDH shifted slightly as compared to the redox potential of PQQ, which prosthetic group of FDH and the electrode shuttling between the prosthetic group of FDH and the electrode through the PP interface. In addition, the anodic and cathodic peak shapes and peak currents of PP/FDH/Pt electrode were identical, which suggests reversibility of the electron transport process. [Pg.343]

Among the main goals of electrochemical research are the design, characterization and understanding of electrocatalytic systems, (1-2) both in solution and on electrode surfaces. (3.) Of particular importance are the nature and structure of reactive intermediates involved in the electrocatalytic reactions.(A) The nature of an electrocatalytic system can be quite varied and can include activation of the electrode surface by specific pretreatments (5-9) to generate active sites, deposition or adsorption of metallic adlayers (10-111 or transition metal complexes. (12-161 In addition the electrode can act as a simple electron shuttle to an active species in solution such as a metallo-porphyrin or phthalocyanine. [Pg.217]

However, because of the mostly very slow electron transfer rate between the redox active protein and the anode, mediators have to be introduced to shuttle the electrons between the enzyme and the electrode effectively (indirect electrochemical procedure). As published in many papers, the direct electron transfer between the protein and an electrode can be accelerated by the application of promoters which are adsorbed at the electrode surface [27], However, this type of electrode modification, which is quite useful for analytical studies of the enzymes or for sensor applications is in most cases not stable and effective enough for long-term synthetic application. Therefore, soluble redox mediators such as ferrocene derivatives, quinoid compounds or other transition metal complexes are more appropriate for this purpose. [Pg.96]

Chapters 4 and 5 are devoted to molecular and biomolecular catalysis of electrochemical reactions. As discussed earlier, molecular electrochemistry deals with transforming molecules by electrochemical means. With molecular catalysis of electrochemical reactions, we address the converse aspect of molecular electrochemistry how to use molecules to produce better electrochemistry. It is first important to distinguish redox catalysis from chemical catalysis. In the first case, the catalytic effect stems from the three-dimensional dispersion of the mediator (catalyst), which merely shuttles the electrons between the electrode and the reactant. In chemical catalysis, there is a more intimate interaction between the active form of the catalyst and the reactant. The differences between the two types of catalysis are illustrated by examples of homogeneous systems in which not only the rapidity of the catalytic process, but also the selectivity problems, are discussed. [Pg.502]

Transition metal complexes with o-dioxolene ligands constitute one of the most intriguing classes of complexes as far as their electrochemical behaviour is concerned, in that, as already mentioned in Chapter 5, Section 1, such ligands are able to shuttle through the oxidation states o-benzoquinone)o-benzosemiquinone/catecholate illustrated in Scheme 250 (a process carried out in nature by the dicopper (I I)-based enzyme catechol oxidase through a single two-electron step see Chapter 9, Section 1.2). [Pg.348]

J. St-Pierre and N. Jia. Successful demonstration of Ballard PEMFGs for space shuttle applications. Journal of New Materials for Electrochemical Systems 5 (2002) 263-271. [Pg.302]

In MET, a low-molecular-weight, redox-active species, referred to as a mediator, is introduced to shuttle electrons between the enzyme active site and the electrode.In this case, the enzyme catalyzes the oxidation or reduction of the redox mediator. The reverse transformation (regeneration) of the mediator occurs on the electrode surface. The major characteristics of mediator-assisted electron transfer are that (i) the mediator acts as a cosubstrate for the enzymatic reaction and (ii) the electrochemical transformation of the mediator on the electrode has to be reversible. In these systems, the catalytic process involves enzymatic transformations of both the first substrate (fuel or oxidant) and the second substrate (mediator). The mediator is regenerated at the electrode surface, preferably at low overvoltage. The enzymatic reaction and the electrode reaction can be considered as separate yet coupled. [Pg.633]

Any electrochemical device using a low molecular weight redox couple to shuttle electrons from the redox center of an enzyme to the surface of an indicator electrode, thereby increasing the effectiveness of amperometry in the detection of a substrate for the particular enzyme. The internal cavities of six-, seven-, and eight-membered cyclodextrins are trapezoids of revolution with larger open mouths dimensions (/. c., respective diameters of... [Pg.446]

An alternative method is to use electrochemical mediators that are at a higher concentration that O2 and can therefore be shuttled back and forth between the protein and the electrode faster than the enzyme is reduced, so that the arrival of the glucose is always rate-limiting. A typical chemical that works in this way is ferrocene, which is an iron cation between two cyclopentadienyl anions, as shown in Figure 6.47. It exists in neutral and - -1 oxidation state that are readily interconvertible at metal or carbon electrodes. [Pg.598]

Structurally related to these species are the triply branched compound 56+ and its rotaxanes 66+, 76+, and 86+ (Fig. 13.6)9, in which one, two, or three acceptor units are encircled by the electron donor macrocyclic compound 2. Although these rotaxanes cannot behave as degenerate molecular shuttles because of their branched topology, they are nevertheless interesting from the electrochemical viewpoint. [Pg.382]

Among the various techniques that can be employed to investigate the ring shuttling between the two stations, the electrochemical ones are very useful, particularly the cyclic voltammetry when it is used for monitoring the behavior of the bipyridinium unit, which is one of the two stations involved in the ring shuttling. In protonated rotaxane 9H3 + (Fig. 13.10), the first and second one-electron reduction... [Pg.388]

As discussed in Section 13.2.2, when a rotaxane contains two different recognition sites in its dumbbell component, it can behave as a controllable molecular shuttle, and, if appropriately designed by incorporating suitable redox units, it can perform its machine-like operation by exploiting electrochemical energy inputs. Of course, in such cases, electrons/holes, besides supplying the energy needed to make the machine work, can also be useful to read the state of the systems by means of the various electrochemical techniques. [Pg.406]

The first example of electrochemically driven molecular shuttles is rotaxane 284+ (Fig. 13.25) constituted by the electron-deficient cyclophane 124+ and a dumbbellshaped component containing two different electron donors, namely, a benzidine and a biphenol moieties, that represent two possible stations for the cyclophane.10 Because benzidine is a better recognition site for 124+ than biphenol, the prevalent isomer is that having the former unit inside the cyclophane. The rotaxane... [Pg.406]

Figure 13.26 Structure formula of rotaxane 294+ and the electrochemically induced shuttling of the cyclophane along the dumbbell-shaped component (CH3CN, 298 K). Figure 13.26 Structure formula of rotaxane 294+ and the electrochemically induced shuttling of the cyclophane along the dumbbell-shaped component (CH3CN, 298 K).
After this first report, a remarkable number of electrochemically controllable molecular shuttles have been designed, constructed, and studied. Rotaxane 294+ (Fig. 13.26), for instance, incorporates the electron-deficient cyclophane 124+ and a dumbbell containing two kinds of electron-rich units, namely, one 2,6-dioxyanthra-cene and two 1,4-dioxybenzene moieties.34 In solution, the rotaxane is present as the isomer with the 2,6-dioxyanthracene unit inside the cyclophane, owing to the fact that this unit is a better station in comparison to the 1,4-dioxybenzene recognition sites. [Pg.407]


See other pages where Shuttle electrochemical is mentioned: [Pg.337]    [Pg.457]    [Pg.1805]    [Pg.337]    [Pg.457]    [Pg.1805]    [Pg.306]    [Pg.451]    [Pg.719]    [Pg.121]    [Pg.472]    [Pg.157]    [Pg.185]    [Pg.113]    [Pg.251]    [Pg.298]    [Pg.29]    [Pg.134]    [Pg.137]    [Pg.138]    [Pg.73]    [Pg.273]    [Pg.23]    [Pg.30]    [Pg.36]    [Pg.240]    [Pg.242]    [Pg.387]    [Pg.389]    [Pg.404]    [Pg.406]   


SEARCH



Shuttles

Shuttling

© 2024 chempedia.info