Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrochemical partitioning

Other solubilization and partitioning phenomena are important, both within the context of microemulsions and in the absence of added immiscible solvent. In regular micellar solutions, micelles promote the solubility of many compounds otherwise insoluble in water. The amount of chemical component solubilized in a micellar solution will, typically, be much smaller than can be accommodated in microemulsion fonnation, such as when only a few molecules per micelle are solubilized. Such limited solubilization is nevertheless quite useful. The incoriDoration of minor quantities of pyrene and related optical probes into micelles are a key to the use of fluorescence depolarization in quantifying micellar aggregation numbers and micellar microviscosities [48]. Micellar solubilization makes it possible to measure acid-base or electrochemical properties of compounds otherwise insoluble in aqueous solution. Micellar solubilization facilitates micellar catalysis (see section C2.3.10) and emulsion polymerization (see section C2.3.12). On the other hand, there are untoward effects of micellar solubilization in practical applications of surfactants. Wlren one has a multiphase... [Pg.2592]

To a 250-ml not-partitioned electrochemical cell, 135 ml of CH3CN, 15 ml ofHiO, 6.20 g of NaBr and 2.82 g of olefin ( ) is added. The mixture, kept at 2(f C, is electrolysed by using the same electrodes as of Example 1, but with a constant current density of 1.7 A being used,until through the cell 4,000 Coulombs have been passed. The reaction mixture is then processed as described in Example 4.2.56 g is obtained of ketone (III), with a yield of 83.2%, as computed relatively to the olefin (I) used as the starting material. [Pg.192]

Membrane depolarization can be measured by members of a class of fluorophores (commonly referred to as the carbocyanine dyes) which have been designed to partition into the membrane, where their orientation and spectral properties change with changes in the electrochemical gradient across the membrane (18). 3,3 -dipropyl-... [Pg.26]

Some specific solutes diffuse down electrochemical gradients across membranes more rapidly than might be expected from their size, charge, or partition coefficients. This facilitated diffusion exhibits properties distinct from those of simple diffusion. The rate of facilitated diffusion, a uniport system, can be saturated ie, the number of sites involved in diffusion of the specific solutes appears finite. Many facihtated diffusion systems are stereospecific but, fike simple diffusion, require no metabolic energy. [Pg.427]

Reymond, F., Gobry, V., Bouchard, G., Girault, H. H. Electrochemical aspects of drug partitioning. In Pharmacokinetic Optimization in Drug Research ... [Pg.435]

Acetochlor and its metabolites are extracted from plant and animal materials with aqueous acetonitrile. After filtration and evaporation of the solvent, the extracted residue is hydrolyzed with base, and the hydrolysis products, EMA and HEMA (Figure 1), are steam distilled into dilute acid. The distillate is adjusted to a basic pH, and EMA and HEMA are extracted with dichloromethane. EMA and HEMA are partitioned into aqueous-methanolic HCl solution. Following separation from dichloromethane, additional methanol is added, and HEMA is converted to methylated HEMA (MEMA) over 12 h. The pH of the sample solution is adjusted to the range of the HPLC mobile phase, and EMA and MEMA are separated by reversed phase HPLC and quantitated using electrochemical detection. [Pg.351]

In pioneering studies [47], the SECM feedback mode was used to study the ET reaction between ferrocene (Fc), in nitrobenzene (NB), and the aqueous mediator, FcCOO, electrochemically generated at the UME by oxidation of the ferrocenemonocar-boxylate ion, FcCOO. Tetraethylammonium perchlorate (TEAP) was applied in both phases as the partitioning electrolyte. The results of this study indicated that the reaction at the ITIES was limited by the ET process, provided that there was a sufficiently high concentration of TEAP in both phases. [Pg.314]

As will be described in detail below, solute distribution in biphasic systems can be modulated by application of a Galvani potential difference across the interface, thereby leading to the transfer of species from one phase to the other. Therefore, in electrochemical terms, passive transfer simply means the partition across an interface, mediated by a potential-driven process. [Pg.729]

It is relevant to present here some preliminaries as regards the salt bridge, this being a traditionally used and more convenient way than the porous partitioning medium in setting up a laboratory assemblage of an electrochemical cell. In this premise, attention is focused on the line formulae of the two cells as presented below ... [Pg.628]

The only potential that varies significantly is the phase boundary potential at the membrane/sample interface EPB-. This potential arises from an unequal equilibrium distribution of ions between the aqueous sample and organic membrane phases. The phase transfer equilibrium reaction at the interface is very rapid relative to the diffusion of ions across the aqueous sample and organic membrane phases. A separation of charge occurs at the interface where the ions partition between the two phases, which results in a buildup of potential at the sample/mem-brane interface that can be described thermodynamically in terms of the electrochemical potential. At interfacial equilibrium, the electrochemical potentials in the two phases are equal. The phase boundary potential is a result of an equilibrium distribution of ions between phases. The phase boundary potentials can be described by the following equation ... [Pg.641]

The rate constants, k+ and k of the forward and backward reactions are finally derived from (12) and (13) according to the transition-state theory, i.e. assuming that the transition and the initial states, on the one hand, and the transition and final states, on the other, are in equilibrium (Glasstone et al., 1941). Thus, estimating the partition function of these three states in the classical way gives (18) and (19), where p is the reduced mass of the two reactants in the homogeneous case and m the mass of the reactant in the electrochemical case. [Pg.9]

Sterling Jr MC, Bonner JS, Page CA, Ernest ANS, Autenrieth RL (2003) Partitioning of crude oil polycyclic aromatic hydrocarbons in aquatic systems. Environ Sci Technol 37 4429-4434 Stern O (1924) Zur theorie der elecktrolytischen doppelschict. Z Electrochem 30 508-516 Stollenwerk KC, Grove DB (1985) Adsorption and desorption of hexavalent chromium in an alluvial aquifer near Telluride, Colorado. J Environ Qual 14 150-155 Stumm W, Morgan JJ (1996) Aquatic chemistry, 3rd edn. WUey, New York... [Pg.393]


See other pages where Electrochemical partitioning is mentioned: [Pg.273]    [Pg.273]    [Pg.597]    [Pg.190]    [Pg.191]    [Pg.192]    [Pg.75]    [Pg.19]    [Pg.33]    [Pg.618]    [Pg.548]    [Pg.302]    [Pg.29]    [Pg.200]    [Pg.202]    [Pg.535]    [Pg.682]    [Pg.695]    [Pg.734]    [Pg.749]    [Pg.757]    [Pg.758]    [Pg.210]    [Pg.631]    [Pg.94]    [Pg.120]    [Pg.33]    [Pg.177]    [Pg.211]    [Pg.343]    [Pg.305]    [Pg.215]    [Pg.117]    [Pg.520]    [Pg.165]    [Pg.15]    [Pg.16]    [Pg.302]    [Pg.248]   
See also in sourсe #XX -- [ Pg.283 ]




SEARCH



© 2024 chempedia.info