Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrochemical methods cells

The diversity of interfacial electrochemical methods is evident from the partial family tree shown in Figure 11.1. At the first level, interfacial electrochemical methods are divided into static methods and dynamic methods. In static methods no current passes between the electrodes, and the concentrations of species in the electrochemical cell remain unchanged, or static. Potentiometry, in which the potential of an electrochemical cell is measured under static conditions, is one of the most important quantitative electrochemical methods, and is discussed in detail in Section IIB. [Pg.462]

In potentiometry, the potential of an electrochemical cell under static conditions is used to determine an analyte s concentration. As seen in the preceding section, potentiometry is an important and frequently used quantitative method of analysis. Dynamic electrochemical methods, such as coulometry, voltammetry, and amper-ometry, in which current passes through the electrochemical cell, also are important analytical techniques. In this section we consider coulometric methods of analysis. Voltammetry and amperometry are covered in Section 1 ID. [Pg.496]

Electrochemical methods covered in this chapter include poten-tiometry, coulometry, and voltammetry. Potentiometric methods are based on the measurement of an electrochemical cell s potential when only a negligible current is allowed to flow, fn principle the Nernst equation can be used to calculate the concentration of species in the electrochemical cell by measuring its potential and solving the Nernst equation the presence of liquid junction potentials, however, necessitates the use of an external standardization or the use of standard additions. [Pg.532]

The reduction of dimensions also reduces volumes which are accessible to the detector. Thus, detection principles related to geometric dimensions of the detector cell ai e not ideally suited for coupling to microsystems, whereas surface sensitive principles, such as electrochemical methods or optical methods utilizing the evanescent field of a waveguide, or methods which can be focussed on a small amount of liquid, such as electrochemiluminescence (ECE), ai e better suited. This is why electrochemiluminescence detectors ai e combined to microsystems. Moreover ECE has found wide applications in biochemistry because of its high sensitivity, relatively simplicity and feasibility under mild conditions. [Pg.324]

Electrochemical Method.—In this the value of the equilibrium constant K is calculated from the maximum work measured by means of the electromotive force of a voltaic cell (cf. Chap. XVI.). [Pg.357]

The Volta potential is defined as the difference between the electrostatic outer potentials of two condensed phases in equilibrium. The measurement of this and related quantities is performed using a system of voltaic cells. This technique, which in some applications is called the surface potential method, is one of the oldest but still frequently used experimental methods for studying phenomena at electrified solid and hquid surfaces and interfaces. The difficulty with the method, which in fact is common to most electrochemical methods, is lack of molecular specificity. However, combined with modem surface-sensitive methods such as spectroscopy, it can provide important physicochemical information. Even without such complementary molecular information, the voltaic cell method is still the source of much basic electrochemical data. [Pg.13]

Current world chlorate production (about 700 kilotons per year) is based entirely on an electrochemical method where reactions (15.21) to (15.34) occur simultanously in undivided cells. A small amount of bichromate ions are added to the solution to reduce chlorate losses by rereduction at the cathode these form a thin protective layer at the cathode which passivates the reduction of chlorate and hypochlorite ions. [Pg.279]

In medical practice, methods and instruments relying on electrochemical principles are widely nsed in diagnosing various diseases. The most important ones are electrocardiography, where the transmembrane potential of the muscle cells during contraction of the heart mnscle is measured, and electroencephalography, where impulses from nerve cells of the brain are measured. They also include the numerous instruments nsed to analyze biological fluids by electrochemical methods (see also Section 30.3). [Pg.411]

The ionic potentials can be experimentally determined either with the use of galvanic cells containing interfaces of the type in Scheme 7 or electroanalytically, using for instance, polarography, voltammetry, or chronopotentiometry. The values of and Aj f, obtained with the use of electrochemical methods for the water-1,2-dichloroethane, water-dichloromethane, water-acetophenone, water-methyl-isobutyl ketone, o-nitrotol-uene, and chloroform systems, and recently for 2-heptanone and 2-octanone [43] systems, have been published. These data are listed in many papers [1-10,14,37]. The most probable values for a few ions in water-nitrobenzene and water-1,2-dichloroethane systems are presented in Table 1. [Pg.30]

A. Brunet, C. Privat, O. Stepien, M. David-Dufilho, J. Devynck, and M.A. Devynck, Advantages and limits of the electrochemical method using Nafion and Ni-porphyrin-coated microelectrode to monitor NO release from cultured vascular cells. Analusis 28, 469 (2000). [Pg.47]

Another possibility to analyze the combustion quality is to measure components in the flue gas which are directly related to the 02-content like CO or C02. There are two main methods of measuring C02. One detection method uses electrochemical cells (see chapter 5.3.2.3), but both liquid and solid-state electrochemical C02-cells are not long-term stable if directly exposed to flue gas. A more promising approach is the measurement of the CO content by using modified high-temperature stable... [Pg.153]

A prerequisite for a precise and accurate titration is the reproducible identification of an end point which either coincides with the stoichiometric point of the reaction or bears a fixed and measurable relation to it. An end point may be located either by monitoring a property of the titrand which is removed when the stoichiometric point is passed, or a property which can be readily observed when a small excess of the titrant has been added. The most common processes observed in end-point detection are change of colour change of electrical cell potential change of electrical conductivity precipitation or flocculation. (Electrochemical methods are discussed in Chapter 6 precipitation indicators find only limited use.)... [Pg.193]

Wagner pioneered the use of solid electrolytes for thermochemical studies of solids [62], Electrochemical methods for the determination of the Gibbs energy of solids utilize the measurement of the electromotive force set up across an electrolyte in a chemical potential gradient. The electrochemical potential of an electrochemical cell is given by ... [Pg.319]

A schematic diagram of the cation flow method for generating N-acyliminium ion 2 is shown in Fig. 5. A solution of carbamate 1 is introduced into the anodic compartment of electrochemical microflow cell, where oxidation takes place on the surface of a carbon fiber electrode. A solution of trifluoromethanesulfonic acid (TfOH) was introduced in the cathodic compartment, where protons are reduced to generate dihydrogen on the surface of a platinum electrode. A-Acyliminium ion 2 thus generated can be analyzed by an in-line FT-IR analyzer to evaluate the concentration of the cation. The solution of the cation is then allowed to react with a nucleophile such as allyltrimethylsilane in the flow system to obtain the desired product 3. [Pg.212]

Tin was also deposited by the same method as for Pt-Sn electrodes. Then, the electrodes were washed with hydrogen-saturated water again and transferred to the electrochemical measiirmnent cell. [Pg.239]

The indirect cyclisation of bromoacetals via cobaloxime(I) complexes was first reported in 1985 [67], At that time the reactions were conducted in a divided cell in the presence of a base (40yo aqeous NaOH) and about 50% of chloropyridine cobaloximeflll) as catalyst precursor. It was recently found that the amount of catalyst can be reduced to 5% (turnover of ca. 50) and that the base is no longer necessary when the reactions are conducted in an undivided cell in the presence of a zinc anode [68, 69]. The method has now been applied with cobaloxime or Co[C2(DOXDOH)p ] to a variety of ethylenic and acetylenic compounds to prepare fused bicyclic derivatives (Table 7, entry 1). The cyclic product can be either saturated or unsaturated depending on the amount of catalyst used, the cathode potential, and the presence of a hydrogen donor, e.g., RSH (Table 7, entry 2). The electrochemical method was found with some model reactions to be more selective and more efficient than the chemical route using Zn as reductant [70]. [Pg.155]

D. P. Wilkinson, M. C. Johnson, K. M. Colbow, and S. A. Campbell. Method and apparatus for reducing reactant crossover in a liquid feed electrochemical fuel cell. US Patent 5874182 (1999). [Pg.303]


See other pages where Electrochemical methods cells is mentioned: [Pg.503]    [Pg.494]    [Pg.97]    [Pg.549]    [Pg.472]    [Pg.412]    [Pg.43]    [Pg.197]    [Pg.575]    [Pg.286]    [Pg.99]    [Pg.114]    [Pg.619]    [Pg.707]    [Pg.339]    [Pg.127]    [Pg.171]    [Pg.229]    [Pg.300]    [Pg.136]    [Pg.367]    [Pg.400]    [Pg.463]    [Pg.143]    [Pg.248]    [Pg.31]    [Pg.113]    [Pg.352]    [Pg.96]    [Pg.277]   
See also in sourсe #XX -- [ Pg.55 , Pg.56 ]




SEARCH



Cells method

Diagnostic Tools to Identify Catalyst Degradation During Fuel Cell Operation Electrochemical Methods

Electrochemical cell

Electrochemical methods

© 2024 chempedia.info