Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electro conditions

For the case of electro-magnets, inclusions detection in welds situated at 1-2 mm of depth is very important, because the reluctance variation between the two mediums is not important, and thus the detection of this type of defect is very difficult. It will be sufficient to be in optimal conditions to eliminate this problem. [Pg.637]

Dir, whereas for small distances d < r), /r Did. The large effective obtainable enables fast heterogeneous reaction rates to be measured under steady-state conditions. Zhou and Bard measured a rate constant of 6 x 10 Ms for the electro-hydrodimerization of acrylonitrile (AN) and observed the short-lived intennediate AN for this process [65]. [Pg.1942]

Ion implantation (qv) has a large (10 K/s) effective quench rate (64). This surface treatment technique allows a wide variety of atomic species to be introduced into the surface. Sputtering and evaporation methods are other very slow approaches to making amorphous films, atom by atom. The processes involve deposition of a vapor onto a cold substrate. The buildup rate (20 p.m/h) is also sensitive to deposition conditions, including the presence of impurity atoms which can faciUtate the formation of an amorphous stmcture. An approach used for metal—metalloid amorphous alloys is chemical deposition and electro deposition. [Pg.337]

The pH must be kept at 7.0—7.2 for this method to be quantitative and to give a stable end poiut. This condition is easily met by addition of soHd sodium bicarbonate to neutralize the HI formed. With starch as iudicator and an appropriate standardized iodine solution, this method is appHcable to both concentrated and dilute (to ca 50 ppm) hydraziue solutious. The iodiue solutiou is best standardized usiug mouohydraziuium sulfate or sodium thiosulfate. Using an iodide-selective electrode, low levels down to the ppb range are detectable (see Electro analytical techniques) (141,142). Potassium iodate (143,144), bromate (145), and permanganate (146) have also been employed as oxidants. [Pg.287]

Flow and Performance Calculations. Electro dynamic equations are usehil when local gas conditions (, a, B) are known. In order to describe the behavior of the dow as a whole, however, it is necessary to combine these equations with the appropriate dow conservation and state equations. These last are the mass, momentum, and energy conservation equations, an equation of state for the working duid, an expression for the electrical conductivity, and the generalized Ohm s law. [Pg.417]

Preparation of Uranium Metal. Uranium is a highly electropositive element, and extremely difficult to reduce. As such, elemental uranium caimot be prepared by reduction with hydrogen. Instead, uranium metal must be prepared using a number of rather forcing conditions. Uranium metal can be prepared by reduction of uranium oxides (UO2 [1344-59-8] or UO [1344-58-7] with strongly electropositive elements (Ca, Mg, Na), reduction of uranium halides (UCl [10025-93-1], UCl [10026-10-5] UF [10049-14-6] with electropositive metals (Li, Na, Mg, Ca, Ba), electro deposition from molten... [Pg.320]

In this work, a method based on the reduction potential of ascorbic acid was developed for the sensitive detennination of trace of this compound. In this method ascorbic acid was added on the Cr(VI) solution to reduced that to Cr(III). Cr(III) produced in solution was quantitatively separated from the remainder of Cr(VI). The conditions were optimized for efficient extraction of Cr(III). The extracted Cr(III) was finally mineralized with nitric acid and sensitively analyzed by electro-thermal atomic absorption spectrometry. The determinations were carried out on a Varian AA-220 atomic absolution equipped with a GTA-110 graphite atomizer. The results obtained by this method were compared with those obtained by the other reported methods and it was cleared that the proposed method is more precise and able to determine the trace of ascorbic acid. Table shows the results obtained from the determination of ascorbic acid in two real samples by the proposed method and the spectrometric method based on reduction of Fe(III). [Pg.154]

Contemporary development of chromatography theory has tended to concentrate on dispersion in electro-chromatography and the treatment of column overload in preparative columns. Under overload conditions, the adsorption isotherm of the solute with respect to the stationary phase can be grossly nonlinear. One of the prime contributors in this research has been Guiochon and his co-workers, [27-30]. The form of the isotherm must be experimentally determined and, from the equilibrium data, and by the use of appropriate computer programs, it has been shown possible to calculate the theoretical profile of an overloaded peak. [Pg.7]

In electro-gravimetric analysis the element to be determined is deposited electroly tically upon a suitable electrode. Filtration is not required, and provided the experimental conditions are carefully controlled, the co-deposition of two metals can often be avoided. Although this procedure has to a large extent been superseded by potentiometric methods based upon the use of ion-selective electrodes (see Chapter 15), the method, when applicable has many advantages. The theory of the process is briefly discussed below in order to understand how and when it may be applied for a more detailed treatment see Refs 1-9. [Pg.503]

The diffusion current Id depends upon several factors, such as temperature, the viscosity of the medium, the composition of the base electrolyte, the molecular or ionic state of the electro-active species, the dimensions of the capillary, and the pressure on the dropping mercury. The temperature coefficient is about 1.5-2 per cent °C 1 precise measurements of the diffusion current require temperature control to about 0.2 °C, which is generally achieved by immersing the cell in a water thermostat (preferably at 25 °C). A metal ion complex usually yields a different diffusion current from the simple (hydrated) metal ion. The drop time t depends largely upon the pressure on the dropping mercury and to a smaller extent upon the interfacial tension at the mercury-solution interface the latter is dependent upon the potential of the electrode. Fortunately t appears only as the sixth root in the Ilkovib equation, so that variation in this quantity will have a relatively small effect upon the diffusion current. The product m2/3 t1/6 is important because it permits results with different capillaries under otherwise identical conditions to be compared the ratio of the diffusion currents is simply the ratio of the m2/3 r1/6 values. [Pg.597]

The superior donor properties of amino groups over alkoxy substituents causes a higher electron density at the metal centre resulting in an increased M-CO bond strength in aminocarbene complexes. Therefore, the primary decarbo-nylation step requires harsher conditions moreover, the CO insertion generating the ketene intermediate cannot compete successfully with a direct electro-cyclisation of the alkyne insertion product, as shown in Scheme 9 for the formation of indenes. Due to that experience amino(aryl)carbene complexes are prone to undergo cyclopentannulation. If, however, the donor capacity of the aminocarbene ligand is reduced by N-acylation, benzannulation becomes feasible [22]. [Pg.131]

A general case of heat transfer under the conditions of combined action of electro-osmotic forces and imposed pressure gradient was considered by Chakra-borty (2006). The analysis showed that in this case the Nusselt number depends not only on parameters z and S, but also on an additional dimensionless group, which is a measure of the relative significance of the pressure gradient and osmotic forces. [Pg.185]

In the field of soluble conducting polymers new data have been published on poly(3-alkylthiophenes " l They show that the solubility of undoped polymers increases with increasing chain length of the substituent in the order n-butyl > ethyl methyl. But, on the other hand, it has turned out that in the doped state the electro-chemically synthesized polymers cannot be dissolved in reasonable concentrations In a very recent paper Feldhues et al. have reported that some poly(3-alkoxythio-phenes) electropolymerized under special experimental conditions are completely soluble in dipolar aprotic solvents in both the undoped and doped states. The molecular weights were determined in the undoped state by a combination of gel-permeation chromatography (GPC), mass spectroscopy and UV/VIS spectroscopy. It was established that the usual chain length of soluble poly(3-methoxthythiophene) consists of six monomer units. [Pg.36]

In the previous sections, we have seen how computer simulations have contributed to our understanding of the microscopic structure of liquid crystals. By applying periodic boundary conditions preferably at constant pressure, a bulk fluid can be simulated free from any surface interactions. However, the surface properties of liquid crystals are significant in technological applications such as electro-optic displays. Liquid crystals also show a number of interesting features at surfaces which are not seen in the bulk phase and are of fundamental interest. In this final section, we describe recent simulations designed to study the interfacial properties of liquid crystals at various types of interface. First, however, it is appropriate to introduce some necessary terminology. [Pg.125]

The slurries of electro-catalysts were prepared by mixing together the catalysts and appropriate amount of 5wt % Nafion solution(Du Pont) including some kinds of dispersant[8]. The electrodes were made by spraying method with these well mixed inks. Two electrodes and Nafion 112 membrane were hot pressed with the condition of 50kgf/cm, 120°C for 3min to fabricate MEAs(Membrane Electrode Assembly). [Pg.638]

GL 18] [R 6a] ]P 17] About 100% selectivity was achieved for the hydrogenation of p-nitrotoluene [17], with conversions of 58-98%. The conversion for the electro-deposited catalyst was 58%, whereas the impregnated catalyst gave a 58-98% conversion, depending on the process conditions (see Table 5.1). [Pg.626]


See other pages where Electro conditions is mentioned: [Pg.1249]    [Pg.1925]    [Pg.206]    [Pg.178]    [Pg.126]    [Pg.195]    [Pg.156]    [Pg.336]    [Pg.493]    [Pg.2324]    [Pg.144]    [Pg.2]    [Pg.144]    [Pg.476]    [Pg.1171]    [Pg.186]    [Pg.305]    [Pg.369]    [Pg.866]    [Pg.227]    [Pg.507]    [Pg.535]    [Pg.596]    [Pg.596]    [Pg.323]    [Pg.1060]    [Pg.191]    [Pg.129]    [Pg.527]    [Pg.642]    [Pg.610]    [Pg.639]    [Pg.100]    [Pg.68]    [Pg.151]   
See also in sourсe #XX -- [ Pg.376 ]




SEARCH



Condition of electro-neutrality

© 2024 chempedia.info