Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electricity atomic structure

Silicon s atomic structure makes it an extremely important semiconductor. Highly purified silicon, doped with such elements as boron, phosphorus, and arsenic, is the basic material used in computer chips, transistors, sUicon diodes, and various other electronic circuits and electrical-current switching devices. Silicon of lesser purity is used in metallurgy as a reducing agent and as an alloying element in steel, brass, and bronze. [Pg.310]

Muller (1951, 1956) developed this instrument, which for the first time enabled extensive details of the atomic structure of a solid surface to be seen directly. Figure 1.1 illustrates schematically the basic construction of a FIM. The specimen is prepared in the form of a fine wire or needle, which has been chemically or electrochemically polished to a sharp point with an end radius typically 50-100 nm. It is mounted along the axis of a vacuum chamber, about 50 mm from a phosphor screen (perhaps 75 mm in diameter). The specimen is mounted on an electrical insulator within a cryostat, and it can be raised to a high positive potential (3-30 kV) by means of the leads attached. [Pg.3]

The modern theory of the electronic structure of the atom is based on experimental observations of the interaction of electricity with matter, studies of electron beams (cathode rays), studies of radioactivity, studies of the distribution of the energy emitted by hot solids, and studies of the wavelengths of light emitted by incandescent gases. A complete discussion of the experimental evidence for the modern theory of atomic structure is beyond the scope of this book. In this chapter only the results of the theoretical treatment will be described, These results will have to be memorized as rules of the game, but they will be used so extensively throughout the general chemistry course that the notation used will soon become familiar. [Pg.251]

It was apparent to Thomson that if atoms in the metal electrode contained negative particles (electrons), they must also contain positive charges because atoms are electrically neutral. Thomson proposed a model for the atom in which positive and negative particles were embedded in some sort of matrix. The model became known as the plum pudding model because it resembled plums embedded in a pudding. Somehow, an equal number of positive and negative particles were held in this material. Of course we now know that this is an incorrect view of the atom, but the model did account for several features of atomic structure. [Pg.5]

In the early part of the twentieth century, then, a simple model of atomic structure became accepted, now known as the Rutherford nuclear model of the atom, or, subsequently, the Bohr-Rutherford model. This supposed that most of the mass of the atom is concentrated in the nucleus, which consists of protons (positively charged particles) and neutrons (electrically neutral particles, of approximately the same mass). The number of protons in the nucleus is called the atomic number, which essentially defines the nature of... [Pg.229]

The atomic structure of a heterogeneous catalyst determines its chemical and phase properties, but texture determines a wide range of additional features that dictate such characteristics as adsorption and capillarity, permeability, mechanical strength, heat and electrical conductivity, etc. For example, the apparent catalytic activity,. of a grain, taking into account diffusion of reagents, depends on the interrelation between the rates of reaction and diffusion, and the latter is determined by a porous structure. [Pg.260]

Only a few relevant points about the atomic structures are summarized in the following. Table 4.1 collects basic data about the fundamental physical constants of the atomic constituents. Neutrons (Jn) and protons (ip), tightly bound in the nucleus, have nearly equal masses. The number of protons, that is the atomic number (Z), defines the electric charge of the nucleus. The number of neutrons (N), together with that of protons (A = N + Z) represents the atomic mass number of the species (of the nuclide). An element consists of all the atoms having the same value of Z, that is, the same position in the Periodic Table (Moseley 1913). The different isotopes of an element have the same value of Z but differ in the number of neutrons in their nuclei and therefore in their atomic masses. In a neutral atom the electronic envelope contains Z electrons. The charge of an electron (e ) is equal in size but of opposite sign to that of a proton (the mass ratio, mfmp) is about 1/1836.1527). [Pg.224]

There are of course many other similarities and differences, and some of them are listed in Table 5.1 without further explanations. In general, STM is very versatile and flexible. Especially with the development of the atomic force microscope (AFM), materials of poor electrical conductivity can also be imaged. There is the potential of many important applications. A critically important factor in STM and AFM is the characterization of the probing tip, which can of course be done with the FIM. FIM, with its ability to field evaporate surface atoms and surface layers one by one, and the capability of single atom chemical analysis with the atom-probe FIM (APFIM), also finds many applications, especially in chemical analysis of materials on a sub-nanometer scale. It should be possible to develop an STM-FIM-APFIM system where the sample to be scanned in STM is itself an FIM tip so that the sample can either be thermally treated or be field evaporated to reach into the bulk or to reach to an interface inside the sample. After the emitter surface is scanned for its atomic structure, it can be mass analyzed in the atom-probe for one atomic layer,... [Pg.376]

On die electrode side of the double layer the excess charges are concentrated in the plane of the surface of the electronic conductor. On the electrolyte side of the double layer the charge distribution is quite complex. The potential drop occurs over several atomic dimensions and depends on the specific reactivity and atomic structure of tine electrode surface and the electrolyte composition. The electrical double layer strongly influences the rate and pathway of electrode reactions. [Pg.178]

Think about the consequences of Thomson s cathode-ray experiments. Because matter is electrically neutral overall, the fact that the atoms in an electrode can give off negatively charged particles (electrons) must mean that those same atoms also contain positively charged particles. The search for those positively charged particles and for an overall picture of atomic structure led to a landmark experiment published in 1911 by the New Zealand physicist Ernest Rutherford (1871-1937). [Pg.43]

Abstract. Nanopowders of nonstoichiometric tungsten oxides were synthesized by method of electric explosion of conductors (EEC). Their electronic and atomic structures were explored by XPS and TEM methods. It was determined that mean size of nanoparticles is d=10-35 nm, their composition corresponds to protonated nonstoichiometric hydrous tungsten oxide W02.9i (OH)o.o9, there is crystalline hydrate phase on the nanoparticles surface. After anneal a content of OH-groups on the surface of nonstoichiometric samples is higher than on the stoichiometric ones. High sensitivity of the hydrogen sensor based on WO2.9r(OH)0.09 at 293 K can be connected with forming of proton conductivity mechanism. [Pg.61]

Taking the different arguments together, it is the author s opinion that the dangling bond model remains the more plausible explanation of the 2.0055 defect. Perhaps within a short time, further studies of the hyperfine interaction or calculations of the defect energy levels, etc. will be able to provide definitive proof one way or the other. In the remainder of this book, for the sake of definiteness, we refer to the 2.0055 ESR spin and the associated deep trap as the dangling bond, recognizing that the interpretation of electrical data involves only the gap state levels and the electron occupancy, not the atomic structure. [Pg.134]


See other pages where Electricity atomic structure is mentioned: [Pg.314]    [Pg.65]    [Pg.751]    [Pg.365]    [Pg.130]    [Pg.203]    [Pg.35]    [Pg.10]    [Pg.292]    [Pg.413]    [Pg.196]    [Pg.182]    [Pg.10]    [Pg.460]    [Pg.119]    [Pg.33]    [Pg.3]    [Pg.73]    [Pg.306]    [Pg.198]    [Pg.137]    [Pg.44]    [Pg.333]    [Pg.171]    [Pg.758]    [Pg.862]    [Pg.1209]    [Pg.60]    [Pg.167]    [Pg.364]    [Pg.283]    [Pg.308]    [Pg.460]    [Pg.54]    [Pg.4730]    [Pg.52]   
See also in sourсe #XX -- [ Pg.389 ]




SEARCH



Electric charge, atomic structure

© 2024 chempedia.info