Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Efflux hepatocyte

Once bilirubin enters the hepatocytes, it can bind to certain cytosolic proteins, which help to keep it solubilized prior to conjugation. Ligandin (a family of glutathione S-transferases) and protein Y are the involved proteins. They may also help to prevent efflux of bilirubin back into the blood stream. [Pg.280]

Figure 32-15. Diagrammatic representation of the three major processes (uptake, conjugation, and secretion) involved in the transfer of bilirubin from blood to bile. Certain proteins of hepatocytes, such as ligandin (a family of glutathione S-transferase) and Y protein, bind intracellular bilirubin and may prevent its efflux into the blood stream. The process affected in a number of conditions causing jaundice is also shown. Figure 32-15. Diagrammatic representation of the three major processes (uptake, conjugation, and secretion) involved in the transfer of bilirubin from blood to bile. Certain proteins of hepatocytes, such as ligandin (a family of glutathione S-transferase) and Y protein, bind intracellular bilirubin and may prevent its efflux into the blood stream. The process affected in a number of conditions causing jaundice is also shown.
It is also important to predict the in vivo biliary excretion clearance in humans, and for this purpose MDCK II cell lines expressing both uptake and efflux transporters may be used (Fig. 12.3) [92, 93]. It has been shown that MRP2 is expressed on the apical membrane, whereas OATP2 and 8 are expressed on the basolateral membrane after cDNA transfection (Fig. 12.3) [92, 93]. The transcellular transport across such double-transfected cells may correspond to the excretion of ligands from blood into bile across hepatocytes. Indeed, the vectorial transport from the basal to apical side was observed for pravastatin only in OATP2- and MRP2-expressing... [Pg.296]

MDCK II cells (Fig. 12.3) [93], Kinetic analysis revealed that the Km value for transcellular transport (24 pM) was similar to the Km for OATP2 (34 pM) [93], Moreover, the efflux across the bile canalicular membrane was not saturated under these experimental conditions. These in vitro observations are consistent with in vivo experimental results in rats which showed that the rate-determining process for the biliary excretion of pravastatin is uptake across the sinusoidal membrane. By normalizing the expression level between the double transfectant and human hepatocytes, it might be possible to predict in vivo hepatobiliary excretion. [Pg.297]

Breast Cancer Resistance Protein (BCRP, also known as MXR or ABCP), first cloned from mitoxantrone and anthracycline-resistant breast and colon cancer cells [188, 189] is a half-transporter efflux pump believed to function as a homo-or hetero-dimer. Following its identification, BCRP-mediated drug resistance was observed for topoisomerase inhibitors including camptothecins [190, 191] and in-dolocarbazoles [192]. In normal tissues, BCRP was detected in placental syncytio-trophoblasts, hepatocyte canalicular membrane, apical intestinal epithelia and vascular endothelial cells [193]. These findings support the important role BCRP plays in modulating topotecan bioavailability, fetal exposure and hepatic elimination [194]. Considering that the substrates and tissue distributions for BCRP overlap somewhat with MDR1 and MRPs [195], additional studies will be required to define the relative contribution of each of these transporters in the overall and tis-... [Pg.199]

A more recent example of this technique has been the study on human absorption characteristics of fexofenadine [109], Fexofenadine has been shown to be a substrate for P-gp in the in vitro cell lines its disposition is altered in knockout mice lacking the gene for MDRla, and co-administration of P-gp inhibitors (e.g. ketoconazole and verapamil) was shown to increase the oral bioavailability of fexofenadine [110-113], Hence, it is suggested that the pharmacokinetics of fexofenadine appears to be determined by P-gp activity. In the human model, the intestinal permeability estimated on the basis of disappearance kinetics from the jejunal segment is low, and the fraction absorbed is estimated to be 2% [114], Co-administration of verapamil/ketoconazole did not affect the intestinal permeability estimates however, an increased extent of absorption (determined by de-convolution) was demonstrated. The increased absorption of fexofenadine was not directly related to inhibition of P-gp-mediated efflux at the apical membrane of intestinal cells as intestinal Peff was unchanged. Furthermore, the effect cannot be explained by inhibition of intestinal based metabolism, as fexofenadine is not metabolised to any major extent. It was suggested that this may reflect modulation of efflux transporters in hepatocyte cells, thereby reducing hepatobiliary extraction of fexofenadine. [Pg.61]

BSEP also known as sister-P-glycoprotein (SPGP) was originally cloned from pig liver (185). BSEP is localized on the canalicular membrane of hepa-tocytes and is responsible for the secretion of bile salts across the canalicular membrane into bile. BSEP appears to be the predominant bile salt efflux system for hepatocytes, and is a critical component in the enterohepatic circulation of bile acids. A number of mutations in the transporter were found to the basis for progressive familial intrahepatic cholestasis type 2 (PFIC2) (186-188). Mutations found in PFIC2 patients include frameshifts, missense mutations, and premature termination codons. Most PFIC2 patients lack immunohistochemically detectable BSEP in their liver. Recently, seven... [Pg.128]

The actions of P-gp located on the cell surface that act to restrict substrate access and to enhance elimination via efflux directed from cytoplasm to extracellular milieu are the most widely studied and understood. The remainder of this section will focus on the ramifications of the P-gp activity at the cell membrane level to disposition, which has been shown to be particularly relevant in barrier tissues such as the intestine, BBB, and blood-testes barrier, and in cells of eliminating organs such as hepatocytes and renal tubule cells. [Pg.375]

Kristensen, L.O. Folke, M. (1984). Volume-regulatory K+ efflux during concentrative uptake of alanine in isolated rat hepatocytes. Biochem. J. 221,265-268. [Pg.207]

The use of in vitro systems to evaluate hepatic drug uptake and efflux is an essential part of the drug development process. Primary hepatocyte culture is one technique to address this issue. [Pg.540]

Conjugation of lipophilic xenobiotics to polar cellular constituents renders the xenobiotic more water-soluble. While the lipophilic parent xenobiotics could readily diffuse into the cells, the increase in polarity associated with conjugation greatly reduces the ability of the compound to diffuse across the lipid bilayer of the cell membrane thus trapping the compound within the cell. The polar conjugates must therefore rely upon active transport processes to facilitate efflux from the cell. Hepatocytes, as well as other cells involved in chemical detoxification, are rich with members of the ATP-binding cassette superfamily of active transport proteins (ABC transporters). Cellular efflux of xenobiotics by these transporters is often referred to as Phase III elimination because Phase I or II detoxification processes often precede and are a requirement of Phase III elimination. A detailed description and discussion of elimination and transporters is presented in Chapter 15. [Pg.236]


See other pages where Efflux hepatocyte is mentioned: [Pg.418]    [Pg.260]    [Pg.301]    [Pg.76]    [Pg.298]    [Pg.298]    [Pg.303]    [Pg.342]    [Pg.347]    [Pg.353]    [Pg.367]    [Pg.42]    [Pg.16]    [Pg.17]    [Pg.27]    [Pg.34]    [Pg.229]    [Pg.368]    [Pg.534]    [Pg.81]    [Pg.506]    [Pg.272]    [Pg.304]    [Pg.130]    [Pg.131]    [Pg.107]    [Pg.158]    [Pg.166]    [Pg.376]    [Pg.616]    [Pg.193]    [Pg.522]    [Pg.541]    [Pg.541]    [Pg.280]    [Pg.285]    [Pg.347]    [Pg.682]    [Pg.685]    [Pg.120]   
See also in sourсe #XX -- [ Pg.328 ]




SEARCH



Hepatocyte efflux transporter

© 2024 chempedia.info