Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Efficiency vapor-phase

The catalytic vapor-phase oxidation of propylene is generally carried out in a fixed-bed multitube reactor at near atmospheric pressures and elevated temperatures (ca 350°C) molten salt is used for temperature control. Air is commonly used as the oxygen source and steam is added to suppress the formation of flammable gas mixtures. Operation can be single pass or a recycle stream may be employed. Recent interest has focused on improving process efficiency and minimizing process wastes by defining process improvements that use recycle of process gas streams and/or use of new reaction diluents (20-24). [Pg.123]

Vapor-Phase Mechanisms. Phosphoms flame retardants can also exert vapor-phase flame-retardant action. Trimethyl phosphate [512-56-1] C H O P, retards the velocity of a methane—oxygen flame with about the same molar efficiency as antimony trichloride (30,31). Both physical and chemical vapor-phase mechanisms have been proposed for the flame-retardant action of certain phosphoms compounds. Physical (endothermic) modes of action have been shown to be of dominant importance in the flame-retardant action of a wide range of non-phosphoms-containing volatile compounds (32). [Pg.475]

The hquid-phase processes are more energy efficient than the vapor-phase processes, however, they iacur costiy high pressure equipment investment and also produce waste streams containing used catalyst (213). Both methods produce substantial quantities of by-products which cause refining difficulties. The by-products consist primarily of mesitylene [108-67-8] phorone [504-20-17, and the foUowiag xyUtone isomers (215) ... [Pg.495]

Environmental aspects, as well as the requirement of efficient mixing in the mixed acid process, have led to the development of single-phase nitrations. These can be divided into Hquid- and vapor-phase nitrations. One Hquid-phase technique involves the use of > 98% by weight nitric acid, with temperatures of 20—60°C and atmospheric pressure (21). The molar ratios of nitric acid benzene are 2 1 to 4 1. After the reaction is complete, excess nitric acid is vacuum distilled and recycled. An analogous process is used to simultaneously produce a nitrobenzene and dinitrotoluene mixture (22). A conversion of 100% is obtained without the formation of nitrophenols or nitrocresols. The nitrobenzene and dinitrotoluene are separated by distillation. [Pg.65]

Heterogeneous hydrogenation catalysts can be used in either a supported or an unsupported form. The most common supports are based on alurnina, carbon, and siUca. Supports are usually used with the more expensive metals and serve several purposes. Most importandy, they increase the efficiency of the catalyst based on the weight of metal used and they aid in the recovery of the catalyst, both of which help to keep costs low. When supported catalysts are employed, they can be used as a fixed bed or as a slurry (Uquid phase) or a fluidized bed (vapor phase). In a fixed-bed process, the amine or amine solution flows over the immobile catalyst. This eliminates the need for an elaborate catalyst recovery system and minimizes catalyst loss. When a slurry or fluidized bed is used, the catalyst must be separated from the amine by gravity (settling), filtration, or other means. [Pg.259]

Density. The density of saturated water and steam is shown in Figure 2 as a function of temperature on the saturation line. As the temperature approaches the critical point, the densities of the Hquid and vapor phase approach each other. This fact is cmcial to boiler constmction and steam purity because the efficiency of separation of water from steam depends on the density difference. [Pg.351]

Introduction of a 3-bromosubstituent onto thiophene is accompHshed by initial tribromination, followed by reduction of the a-bromines by treatment with zinc/acetic acid, thereby utilizing only one of three bromines introduced. The so-called halogen dance sequence of reactions, whereby bromothiophenes are treated with base, causing proton abstraction and rearrangement of bromine to the produce the most-stable anion, has also been used to introduce a bromine atom at position 3. The formation of 3-bromotbiopbene [872-31-1] from this sequence of reactions (17) is an efficient use of bromine. Vapor-phase techniques have also been proposed to achieve this halogen migration (18), but with less specificity. Table 3 summarizes properties of some brominated thiophenes. [Pg.19]

The principal commercial source of 1-butanol is -butyraldehyde [123-72-8] obtained from the Oxo reaction of propylene. A mixture of n- and isobutyraldehyde [78-84-2] is obtained in this process this mixture is either separated initially and the individual aldehyde isomers hydrogenated, or the mixture of isomeric aldehydes is hydrogenated direcdy and the n- and isobutyl alcohol product mix separated by distillation. Typically, the hydrogenation is carried out in the vapor phase over a heterogeneous catalyst. For example, passing a mixture of n- and isobutyraldehyde with 60 40 H2 N2 over a CuO—ZnO—NiO catalyst at 25—196°C and 0.7 MPa proceeds in 99.95% efficiency to the corresponding alcohols at 98.6% conversion (7,8) (see Butyraldehydes Oxo process). [Pg.357]

Stage Efficiency The use of the Murphree plate ejficiency is par-ticulany convenient on y-x diagrams. The Murphree efficiency is defined for the vapor phase as... [Pg.1272]

The application of a 50 percent Murphree vapor-phase efficiency on a y-x magram is illustrated in Fig. 13-40. A pseudo-equilibrium cui ve is drawn halfway (on a vertical line) between the operating hnes and the true-equilibrium cui ve. The true-equilibrium cui ve is used for the first stage (the partial reboiler is assumed to be an equilibrium stage), but for 1 other stages the vapor leaving each stage is assumed to approach the equilibrium value only 50 percent of me way Consequently, the steps in Fig. 13-40 represent actual trays. [Pg.1272]

FIG. 13-40 Application of a 50 percent Murphree vapor-phase efficiency to each stage (excluding the rehoiler) in the column. Each step in the diagram corresponds to an actual stage. [Pg.1272]

When it is desired to compute, with rigorous methods, actual rather than equilibrium stages, Eqs. (13-69) and (13-94) can be modified to include the Murphree vapor-phase efficiency T ij, defined by Eq. (13-29). This is particularly desirable for multistage operations involving feeds containing components of a wide range ol volatility and/or concentration, in which only a rectification (absorption) or stripping action is provided and all components are not sharply separated. In those cases, the use of a different Murphree efficiency for each component and each tray may be necessary to compute recovery accurately. [Pg.1290]

Example 8 Calculation of Rate-Based Distillation The separation of 655 lb mol/h of a bubble-point mixture of 16 mol % toluene, 9.5 mol % methanol, 53.3 mol % styrene, and 21.2 mol % ethylbenzene is to be earned out in a 9.84-ft diameter sieve-tray column having 40 sieve trays with 2-inch high weirs and on 24-inch tray spacing. The column is equipped with a total condenser and a partial reboiler. The feed wiU enter the column on the 21st tray from the top, where the column pressure will be 93 kPa, The bottom-tray pressure is 101 kPa and the top-tray pressure is 86 kPa. The distillate rate wiU be set at 167 lb mol/h in an attempt to obtain a sharp separation between toluene-methanol, which will tend to accumulate in the distillate, and styrene and ethylbenzene. A reflux ratio of 4.8 wiU be used. Plug flow of vapor and complete mixing of liquid wiU be assumed on each tray. K values will be computed from the UNIFAC activity-coefficient method and the Chan-Fair correlation will be used to estimate mass-transfer coefficients. Predict, with a rate-based model, the separation that will be achieved and back-calciilate from the computed tray compositions, the component vapor-phase Miirphree-tray efficiencies. [Pg.1292]

Vapor-phase coohng reduces the cost of the cooling system, increases heat recovery, and may result in improved engine efficiency. [Pg.2494]

With increasing vapor rate, the contact between liquid and vapor increases to increase the rate of mass transfer and the HETP value will improve in efficiency of contact and drop from point C to E to point D. With increasing vapor rate, liquid entrainment will occur into the vapor phase and lower the efficiency (and raise the HETP) to... [Pg.284]

It is our intention to point out clues, mostly from the literature, some from our own work, which suggest approaches to new flame retardant systems with greatly increased efficiency. Both vapor phase and condensed phase mechanisms will be considered. [Pg.97]

The choice of carrier gas and gas flow control are critical for successful GC. The carrier gas does no more in the separation process than its name implies it carries the vapor phase analyte molecules along the column. As such, it must be inert, non-toxic, inexpensive, highly pure and must provide efficient transport with minimal band broadening. For packed column GC, nitrogen is the most commonly used carrier gas, followed by helium. For capillary column GC, the most common carrier gas is helium, followed by hydrogen and nitrogen. [Pg.459]

In an earlier paper Q ), the authors presented an efficient procedure for predicting the phase behavior of systems exhibiting a water - rich liquid phase, a hydrocarbon - rich liquid phase, and a vapor phase. The Peng-Robinson equation of state (2) was used to reDresent the behavior of all three phases. It has the following form ... [Pg.393]


See other pages where Efficiency vapor-phase is mentioned: [Pg.345]    [Pg.345]    [Pg.6]    [Pg.415]    [Pg.487]    [Pg.208]    [Pg.118]    [Pg.329]    [Pg.478]    [Pg.159]    [Pg.185]    [Pg.425]    [Pg.1291]    [Pg.1992]    [Pg.508]    [Pg.1166]    [Pg.6]    [Pg.402]    [Pg.268]    [Pg.6]    [Pg.93]    [Pg.384]    [Pg.932]    [Pg.575]    [Pg.728]    [Pg.123]    [Pg.251]    [Pg.54]    [Pg.365]    [Pg.53]    [Pg.243]    [Pg.14]    [Pg.465]    [Pg.377]   
See also in sourсe #XX -- [ Pg.478 ]




SEARCH



© 2024 chempedia.info