Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Effective adsorption properties

Abstract Attention should be devoted to the measurements of the adsorption properties of catalytic surfaces when they have to work in liquid-solid heterogeneous conditions. The mutual characteristics of the surface and the liquid affect the reagent interactions with the surface sites which could be engaged with the liquid interaction and then not-available for the reagent coordination. This leads to observe effective adsorption properties that could be different from the intrinsic properties of the surface. The possibility to quantitatively determine the effective acid properties of catalytic surfaces by base adsorption is here showed. The adsorption can proceed in any type of liquid of various characteristics (apolar, polar, aprotic, protic) with dynamic (pulse liquid chromatographic method) or equilibrium (liquid recirculation chromatographic method) methods. The measurements of effective acidity allows finding more sound relations with the catalytic activity for a better comprehension of the catalyst work and for a more correct determination of the turnover numbers in liquid-solid catalysis. [Pg.543]

Additives. Because of their versatility, imparted via chemical modification, the appHcations of ethyleneimine encompass the entire additive sector. The addition of PEI to PVC plastisols increases the adhesion of the coatings by selective adsorption at the substrate surface (410). PEI derivatives are also used as adhesion promoters in paper coating (411). The adducts formed from fatty alcohol epoxides and PEI are used as dispersants and emulsifiers (412). They are able to control the viscosity of dispersions, and thus faciHtate transport in pipe systems (413). Eatty acid derivatives of PEI are even able to control the viscosity of pigment dispersions (414). The high nitrogen content of PEIs has a flame-retardant effect. This property is used, in combination with phosphoms compounds, for providing wood panels (415), ceUulose (416), or polymer blends (417,418) with a flame-retardant finish. [Pg.13]

Data accunnilated in the last years on the Ft/Cu alloys, in particular on the 1) surface composition, 2) electronic structure, 3) adsorption properties, 4) catalytic behaviour and 5) various side effects, make a detailed discussion possible of the catalytic selectivity and mechanism of hydrocarbon reactions. [Pg.267]

Platinum is the only acceptable electrocatalyst for most of the primary intermediate steps in the electrooxidation of methanol. It allows the dissociation of the methanol molecule hy breaking the C-H bonds during the adsorption steps. However, as seen earlier, this dissociation leads spontaneously to the formation of CO, which is due to its strong adsorption on Pt this species is a catalyst poison for the subsequent steps in the overall reaction of electrooxidation of CHjOH. The adsorption properties of the platinum surface must be modified to improve the kinetics of the overall reaction and hence to remove the poisoning species. Two different consequences can be envisaged from this modification prevention of the formation of the strongly adsorbed species, or increasing the kinetics of its oxidation. Such a modification will have an effect on the kinetics of steps (23) and (24) instead of step (21) in the first case and of step (26) in the second case. [Pg.82]

As it has been mention in preceding section, the vast effect of the mechanism of adsorption-caused change in electrophysical characteristics of adsorbent is provided by availability of defects [32]. However, various admixtures play similarly important role on effects of properties of oxides including the sensitivity of their electrophysical properties to adsorption [4, 5]. Small amounts of admixtures (of the order of 0.5 -1 mol.-%) can both increase the sensitivity of oxide for instance to oxygen (addition of Y2O3 to calcium oxide over pressure interval lO -10 Torr [189]) and decrease it (addition of Ga203 to ZnO [190]), or can result in insensitivity of electric conductivity on the pressure of the gas in question (as it is the case with respect to O2 while adding 0.5 -1 mol.-% of lithium to NiO [190]). [Pg.88]

I. V. Miloserdov, Effects of the Surface Microcrystalls of Metals on Electrophysical and Adsorption Properties of Oxides, PhD Thesis, Moscow, 1977 (in Russian)... [Pg.397]

Presently, the effective role of reducible materials is strongly debated due to the fact that the reaction mechanisms earlier proposed involve steps both on the support and on the metal. Alternately, the nature of the metal-support may strongly modify the adsorptive properties of noble metals further altering the relative rates of elementary steps taking place over noble metal particles. [Pg.314]

Dhainaut, F., Pietrzyk, S. and Granger, P. (2007) Kinetics of the NO + H2 reaction over supported noble metal based catalysts Support effect on their adsorption properties, Appl. Catal. B 70, 100. [Pg.321]

The effects of calcium on polymer-solvent and polymer-surface interactions are dependent on polymer ionicity a maximum intrinsic viscosity and a minimum adsorption density as a function of polymer ionicity are obtained. For xanthan, on the other hand, no influence of specific polymer-calcium interaction is detected either on solution or on adsorption properties, and the increase in adsorption due to calcium addition is mainly due to reduction in electrostatic repulsion. The maximum adsorption density of xanthan is also found to be independent of the nature of the adsorbent surface, and the value is close to that calculated for a closely-packed monolayer of aligned molecules. [Pg.227]

Effect of Polymer Ionicity. The influence of polymer ionicity on solution and adsorption properties is investigated for polyacrylamides varying from 0-50% ionicity in the absence and presence of calcium. [Pg.234]

The removal of H2S in the gas phase was found to proceed with good results when composites of Ti02 and SiMgO materials were employed, owing to the synergic effect of the photocatalytic activity of the former material and the adsorptive properties of the latter for S02 [134]. [Pg.106]

Morales F., de Smit E., de Groot F.M.F., Visser T., and Weckhuysen B.M. 2007. Effects of manganese oxide promoter on the CO and H2 adsorption properties of titania-supported cobalt Fischer-Tropsch catalysts. J. Catal. 246 91-99. [Pg.14]

On the other hand, irreversible changes in the PZC can be effected in some surfaces. The oxidation of carbon surfaces, for example, changes the PZC and does affect the adsorptive properties. Carbon will be discussed in a later section. [Pg.179]

A method [62] has been described for the determination of down to 2.5pg kg-1 alkylmercury compounds and inorganic mercury in river sediments. This method uses steam distillation to separate methylmercury in the distillate and inorganic mercury in the residue. The methylmercury is then determined by flameless atomic absorption spectrophotometry and the inorganic mercury by the same technique after wet digestion with nitric acid and potassium permanganate [63]. The well known adsorptive properties of clays for alkylmercury compounds does not cause a problem in the above method. The presence of humic acid in the sediment did not depress the recovery of alkylmercury compounds by more than 20%. In the presence of metallic sulphides in the sediment sample the recovery of alkylmercury compounds decreased when more than lmg of sulphur was present in the distillate. The addition of 4M hydrochloric acid, instead of 2M hydrochloric acid before distillation completely, eliminated this effect giving a recovery of 90-100%. [Pg.409]


See other pages where Effective adsorption properties is mentioned: [Pg.165]    [Pg.292]    [Pg.446]    [Pg.240]    [Pg.400]    [Pg.1613]    [Pg.401]    [Pg.533]    [Pg.98]    [Pg.97]    [Pg.467]    [Pg.484]    [Pg.493]    [Pg.498]    [Pg.296]    [Pg.120]    [Pg.146]    [Pg.35]    [Pg.93]    [Pg.80]    [Pg.59]    [Pg.165]    [Pg.445]    [Pg.291]    [Pg.9]    [Pg.3]    [Pg.266]    [Pg.19]    [Pg.24]    [Pg.30]   
See also in sourсe #XX -- [ Pg.543 ]




SEARCH



Adsorption effect

Adsorption irreversibility, effect protein properties

Adsorption properties

© 2024 chempedia.info