Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dysprosium Element

Dysprosium has 7 stable isotopes. There are 29 radioisotopes with the most stable being Dy with a half-life of 3.0 million years, Dy with a half-life of 144.4 days, and Dy with a half-life of 81.6 h. All other radioactive isotopes have half-lives that are less than 10 h (Table 3.9). [Pg.63]


Some nut trees accumulate mineral elements. Hickory nut is notable as an accumulator of aluminum compounds (30) the ash of its leaves contains up to 37.5% of AI2O2, compared with only 0.032% of aluminum oxide in the ash of the Fnglish walnut s autumn leaves. As an accumulator of rare-earth elements, hickory greatly exceeds all other plants their leaves show up to 2296 ppm of rare earths (scandium, yttrium, lanthanum, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium). The amounts of rare-earth elements found in parts of the hickory nut are kernels, at 5 ppm shells, at 7 ppm and shucks, at 17 ppm. The kernel of the Bra2d nut contains large amounts of barium in an insoluble form when the nut is eaten, barium dissolves in the hydrochloric acid of the stomach. [Pg.272]

Rare earth elements, with relatively high thermal neutron activation cross-sections, have been tested or considered as tagging species for this purpose. At GA (Ref 8), preliminary expts were conducted with 0.38 cal ammo using dysprosium (Dy) and europium (Eu) deposited on the wall of the cartridge case and in the gunpowder, and Dy, hoKnium (Ho) and indium (In) in the primer. [Pg.379]

Silvery metal, that can be cut with a knife. Terbium alloys and additives are widely used in optoelectronics to burn CDs as well as in laser printers. The pronounced magnetostriction (Joule effect) makes "terfenol-D" (terbium-dysprosium-iron) indispensable in sonar technology. The physics of the element appears to be more interesting than its chemistry, in which it is rarely used in catalysis. [Pg.145]

The compounds of the rare earth elements are usually highly colored. Neodymium s compounds are mainly lavender and violet, samarium s yellow and brown, holmium s yellow and orange, and erbium s rose-pink. Europium makes pink salts which evaporate easily. Dysprosium makes greenish yellow compounds, and ytterbium, yellow-gold. Compounds of lutetium are colorless, and compounds of terbium are colorless, dark brown, or black. [Pg.43]

Different lanthanide metals also produce different emission spectrums and different intensities of luminescence at their emission maximums. Therefore, the relative sensitivity of time-resolved fluorescence also is dependent on the particular lanthanide element complexed in the chelate. The most popular metals along with the order of brightness for lanthanide chelate fluorescence are europium(III) > terbium(III) > samarium(III) > dysprosium(III). For instance, Huhtinen et al. (2005) found that lanthanide chelate nanoparticles used in the detection of human prostate antigen produced relative signals for detection using europium, terbium, samarium, and dysprosium of approximately 1.0 0.67 0.16 0.01, respectively. The emission... [Pg.476]

These include the following 14 elements cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmi-um, erbium, thulium, ytterbium, and lutetium. [Pg.211]

Californium - the atomic number is 98 and the chemical symbol is Cf. The name derives from the state and the university of California, where the element was first synthesized. Although the earlier members of the actinide series were named in analogy with the names of the corresponding members of the lanthanide series, the only connection with the corresponding element dysprosium (Greek for hard to get at) that was offered by the discoverers was that searchers for another element (gold about a century before in 1849) foimd it difficult to get to California. An American scientific team at the University of California lab in Berkeley,... [Pg.7]

Dysprosium - the atomic number is 66 and the chemical symbol is Dy. The name derives from the Greek dysprositos for hard to get at , due to the difficulty in separating this rare earth element from a holmium mineral in which it was found. Discovery was first claimed by the Swiss chemist Marc Delafontaine in the mineral samarskite in 1878 and he called it philippia. Philippia was subsequently found to be a mixture of terbium and erbium. Dysprosium was later discovered in a holmium sample by the French chemist Paul-Emile Lecoq de Boisbaudron in 1886, who was then credited with the discovery. It was first isolated by the French chemist George Urbain in 1906. [Pg.8]

Dysprosium is the 43rd most abundant element on Earth and ranks ninth in abundance of the rare-earths found in the Earth s crust. It is a metallic element that is usually found as an oxide (disprosia). Like most rare-earths, it is found in the minerals monazite and allanite, which are extracted from river sands of India, Africa, South America, and Australia and the beaches of Florida. It is also found in the mineral bastnasite in California. [Pg.295]

Dysprosium was first discovered in 1886 by the chemist, Paul-Emile Lecoq de Boisbaudran (1838-1912) as he analyzed a sample of the newly discovered erbium oxide (element 68). Boisbaudran was able to separate erbium oxide from a small sample of a new oxide of a metal. He identified this new element as element 66 on the periodic table and called it dispro-... [Pg.295]

Californium is a transuranic element of the actinide series that is homologous with dysprosium (gjDy), just above it in the rare-earth lanthanide series. Cf-245 was the first isotope of californium that was artificially produced. It has a half-life of just 44 minutes. Isotopes of californium are made by subjecting berkelium to high-energy neutrons within nuclear reactors, as follows + (neutrons and A, gamma rays) — °Bk — °Cf + (3- (beta particle... [Pg.327]

Holmium is obtained from monazite, bastnasite and other rare-earth minerals as a by-product during recovery of dysprosium, thulium and other rare-earth metals. The recovery steps in production of all lanthanide elements are very similar. These involve breaking up ores by treatment with hot concentrated sulfuric acid or by caustic fusion separation of rare-earths by ion-exchange processes conversion to halide salts and reduction of the hahde(s) to metal (See Dysprosium, Gadolinium and Erbium). [Pg.339]

Of all the properties of the rare earths that contribute to their many and varied applications one that ranks of special interest is the extremely high thermal neutron capture cross-section associated with the elements gadolinium, samarium, europium and dysprosium, see Table IV. [Pg.173]


See other pages where Dysprosium Element is mentioned: [Pg.63]    [Pg.45]    [Pg.63]    [Pg.45]    [Pg.235]    [Pg.191]    [Pg.194]    [Pg.250]    [Pg.412]    [Pg.286]    [Pg.1]    [Pg.28]    [Pg.249]    [Pg.317]    [Pg.501]    [Pg.100]    [Pg.8]    [Pg.117]    [Pg.117]    [Pg.118]    [Pg.126]    [Pg.103]    [Pg.497]    [Pg.502]    [Pg.291]    [Pg.327]    [Pg.175]    [Pg.216]    [Pg.290]    [Pg.130]    [Pg.3]    [Pg.15]    [Pg.261]    [Pg.877]    [Pg.578]    [Pg.579]   
See also in sourсe #XX -- [ Pg.7 , Pg.10 , Pg.31 , Pg.34 , Pg.35 ]




SEARCH



Dysprosium

Dysprosium elemental abundances

Dysprosium major elements

Dysprosium radioactive elements

© 2024 chempedia.info