Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dynamic scattering techniques

The decay of the structural correlations measured by the static structure factor can be studied by dynamic scattering techniques. From the simulations, the decay of structural correlations is determined most directly by calculating the coherent intermediate scattering function, which differs from Eq. [1] by a time shift in one of the particle positions as defined in Eq. [2] ... [Pg.3]

DLS is a method that measures the time-dependent fluctuation of scattered intensity, and is also referred to as quasi-elastic light scattering or photon correlation spectroscopy. The latter term is the most commonly used for describing the process, since most dynamic scattering techniques employ autocorrelation. [Pg.415]

Static and dynamic scattering techniques are spectroscopic characterisation methods in the sense of Sect. 2.2. These techniques evaluate the functional dependency of measurement signals on a spectral parameter, i.e. on time, space, or classically on wavelength or frequency. The major advantage of spectroscopic methods is the reduced sample preparation (no fractionation), but they involve the inversion problem. That is, the spectrum is a—most frequently incomplete and discrete— nonlinear projection of the size distribution. Beside the scattering techniques, there are further spectroscopic methods which are based on the extinction of radiation or on any other response of the particle system to an external field. This section describes optical, acoustic, and electroacoustic methods that have gained relevance for the characterisation of colloidal suspensions. [Pg.45]

Dynamic scattering techniques probe the relaxation of fluctuations at a scale determined by the instrumental wave number q. In particular, the relaxation time of concentration fluctuations is found to be... [Pg.206]

The scattering techniques, dynamic light scattering or photon correlation spectroscopy involve measurement of the fluctuations in light intensity due to density fluctuations in the sample, in this case from the capillary wave motion. The light scattered from thermal capillary waves contains two observables. The Doppler-shifted peak propagates at a rate such that its frequency follows Eq. IV-28 and... [Pg.124]

Foam rheology has been a challenging area of research of interest for the yield behavior and stick-slip flow behavior (see the review by Kraynik [229]). Recent studies by Durian and co-workers combine simulations [230] and a dynamic light scattering technique suited to turbid systems [231], diffusing wave spectroscopy (DWS), to characterize coarsening and shear-induced rearrangements in foams. The dynamics follow stick-slip behavior similar to that found in earthquake faults and friction (see Section XU-2D). [Pg.525]

By using NFS, information on both rotational and translational dynamics can be extracted. In many cases, it would be favorable to obtain separate information about either rotational or translational mobility of the sensor molecule. In this respect, two other nuclear scattering techniques using synchrotron radiation are of advantage. Synchrotron radiation-based perturbed angular correlations (SRPAC) yields direct and quantitative evidence for rotational dynamics (see Sect. 9.8). NIS monitors the relative influence of intra- and inter-molecular forces via the vibrational density of states (DOS) which can be influenced by the onset of molecular rotation (see Sect. 9.9.5). [Pg.491]

Undoubtedly, the technique most suited to tackle polyatomic multichannel reactions is the crossed molecular beam (CMB) scattering technique with mass spectrometric detection and time-of-flight (TOF) analysis. This technique, based on universal electron-impact (El) ionization coupled with a quadrupole mass filter for mass selection, has been central in the investigation of the dynamics of bimolecular reactions during the past 35 years.1,9-11 El ionization affords, in principle, a universal detection method for all possible reaction products of even a complex reaction exhibiting multiple reaction pathways. Although the technique is not usually able to provide state-resolved information, especially on a polyatomic... [Pg.331]

Komori, S., T. Kanzaki, Y. Murakami, and H. Ueda (1989). Simultaneous measurements of instantaneous concentrations of two species being mixed in a turbulent flow by using a combined laser-induced fluorescence and laser-scattering technique. Physics of Fluids A Fluid Dynamics 1, 349-352. [Pg.417]

Fig. 4 PIC dye nanoparticles prepared by the ion-association method. (1) Particle size distributions (determined by the dynamic light scattering technique) and the corresponding electron micrographs of the dye nanoparticles. The average diameter can be controlled by tuning the molar ratio of TPB- to PIC+ (=[TPB-]/[PIC+]. With an increase in the molar ratio, the average diameter decreased. (2) Absorption spectra of PIC nanoparticles in aqueous solution with different sizes (125 and 64 nm in diameter), exhibiting size-dependent peak shift of the 0-0 band. The spectrum of the aqueous PIC-Br monomer solution is also shown... Fig. 4 PIC dye nanoparticles prepared by the ion-association method. (1) Particle size distributions (determined by the dynamic light scattering technique) and the corresponding electron micrographs of the dye nanoparticles. The average diameter can be controlled by tuning the molar ratio of TPB- to PIC+ (=[TPB-]/[PIC+]. With an increase in the molar ratio, the average diameter decreased. (2) Absorption spectra of PIC nanoparticles in aqueous solution with different sizes (125 and 64 nm in diameter), exhibiting size-dependent peak shift of the 0-0 band. The spectrum of the aqueous PIC-Br monomer solution is also shown...
Particles of a size of less than 2 turn are of particular interest in Process Engineering because of their large specific surface and colloidal properties, as discussed in Section 5.2. The diffusive velocities of such particles are significant in comparison with their settling velocities. Provided that the particles scatter light, dynamic light scattering techniques, such as photon correlation spectroscopy (PCS), may be used to provide information about particle diffusion. [Pg.9]

It has been demonstrated that the dynamical scattering effect correction technique is also effective in image deconvolution for restoring the atomic configuration for crystals with interface when the elliptical windows are applied. The technique is essential in improving the quality of deconvoluted images so that the available crystal thickness extends to 10 nm or even bigger for Si. [Pg.530]

By their nature, and in contrast with microscopic and scattering techniques that are used to elucidate long-ranged structure, spectroscopic methods interrogate short-range structure such as interactions between fixed ions in side chains and counterions, main chain conformations and conformational dynamics, and the fundamental hopping events of water molecules. The most common methods involve infrared (mid-IR and to a much lesser extent near- and far-IR) and solid-state NMR spectroscopies, although other approaches, such as molecular probes, have been utilized. [Pg.322]

It has been widely recognized that the Ught scattering technique yields essential information on a dynamic mechanism of ferroelectric phase transition because it clearly resolves the dynamics of the ferroelectric soft mode that drives the phase transition. Quantum paraelectricity is caused by the non-freezing of the soft mode. Therefore, the isotope-exchange effect on the soft mode is the key to elucidating the scenario of isotopically induced ferroelectricity. [Pg.105]

The different microstructures, shown in Fig. 3, are highly dynamic aggregates. They can be detected by well established scattering techniques, like X-ray, light or neutron scattering [ 13]. Beside scattering techniques, the transitions between the microstructures can be detected from the changes of the viscosity of w/o-micro emulsion. For a diluted dispersion of spherical droplets without interactions, the relative viscosity is expected to obey the Einstein-relation ... [Pg.194]

Critical phenomena of gels have been studied mainly by dynamic light scattering technique, which is one of the most well-established methods to study these phenomena [18-20]. Recently, the critical phenomena of gels were also studied by friction measurement [85, 86] and by calorimetry [55, 56]. In the case of these methods, the divergence of the specific heat or dissipation of the friction coefficient could be monitored as a function of an external intensive variable, such as temperature. These phenomena might be more plausible to some readers than the divergence of the scattered intensity since they can observe the critical phenomena in terms of a macroscopic physical parameter. [Pg.32]

The first data on polymer systems were collected via (laser-) light-scattering techniques [1] and turbidity measurements, further developed by Derham et al. [2,3]. Techniques based on the glass-transition of the polymer-blend constituents were also tested, such as DSC, Dynamic Mechanical Spectroscopy, and Dielectric relaxation [4]. Films made from solutions of... [Pg.576]

Using dynamic light-scattering techniques, Lechner was able to prove that this effect is due to the tendency of PVA to agglomerate for more details see Kulicke, Bose, Bouldin. On the other hand, a decrease in viscosity has been obtained with no detectable change in the average molecular weight. [Pg.134]

In the last two chapters some major properties of the static and dynamic scattering functions have been discussed separately. This chapter deals with the combination of both techniques and with the question of whether such a combination can produce additional information. [Pg.86]

In this paper we discuss how neutron scattering spectroscopy can be applied to the study of the structure and dynamics of adsorbed molecules. Since reviews of elastic and inelastic neutron scattering from adsorbed films have recently appeared (1.-3), our purpose here is not to present a comprehensive survey of every adsorbed system investigated by neutron scattering. Rather, we shall be concerned primarily with two questions which are basic to the characterization of adsorbed species on catalysts and which have been central to the discussion of this symposium. These are the extent to which the neutron scattering technique can be used to determine 1) the orientation and position of an adsorbed molecule and 2) the strength and location of the forces bonding a molecule to a surface. [Pg.247]


See other pages where Dynamic scattering techniques is mentioned: [Pg.244]    [Pg.37]    [Pg.44]    [Pg.44]    [Pg.98]    [Pg.244]    [Pg.37]    [Pg.44]    [Pg.44]    [Pg.98]    [Pg.524]    [Pg.15]    [Pg.128]    [Pg.274]    [Pg.61]    [Pg.158]    [Pg.210]    [Pg.151]    [Pg.104]    [Pg.321]    [Pg.500]    [Pg.528]    [Pg.70]    [Pg.155]    [Pg.27]    [Pg.251]    [Pg.69]    [Pg.682]    [Pg.23]    [Pg.35]    [Pg.201]    [Pg.172]    [Pg.399]    [Pg.155]   
See also in sourсe #XX -- [ Pg.3 ]




SEARCH



Dynamic light scattering technique

Dynamic technique

Dynamical scattering

Scattering techniques

© 2024 chempedia.info