Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dynamic Scanning Calorimetry DSC

DSC is mainly used to observe the thermal transitions of polymers such as the glass transition temperature (Tg) or the melting point (TJ. Several studies have measured the Tg of PS-MMT nanocomposites by DSC [17-19, 37]. [Pg.358]


Other characterization methods that are of value are dynamic scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). A sample DSC is shown in the middle of Figure 15.2. Most cure reactions are exothermic, and the heat generated by cure can cause excessive heat to build up in the polymer if control is not exercised. DSC measures the generation of heat as a function of time and temperature. This can be used to predict the temperature at which the laminate will begin to cure (the onset of the peak in Fig. 15.2) and the temperature or time at which cure will be complete, further improving the selection of cure cycles to try. [Pg.451]

Tg values can be determined via either calorimetric, dynamic scanning calorimetry (DSC) or mechanical dynamic mechanical analysis (DMA) measurements. However, since three dimensional highly crosslinked systems have relatively small amounts of molecular motion, the DSC method is not particularly sensitive for Tg determination [131,132]. Fry and Lind have reported that DSC is misleading, as reactive groups are often sufficiently entrapped in the vitrified structure to give spurious results [133]. [Pg.123]

The crystal stmcture of glycerides may be unambiguously determined by x-ray diffraction of powdered samples. However, the dynamic crystallization may also be readily studied by differential scanning calorimetry (dsc). Crystallization, remelting, and recrystallization to a more stable form may be observed when Hquid fat is solidified at a carefully controlled rate ia the iastmment. Enthalpy values and melting poiats for the various crystal forms are shown ia Table 3 (52). [Pg.130]

Thermal analysis iavolves techniques ia which a physical property of a material is measured agaiast temperature at the same time the material is exposed to a coatroUed temperature program. A wide range of thermal analysis techniques have been developed siace the commercial development of automated thermal equipment as Hsted ia Table 1. Of these the best known and most often used for polymers are thermogravimetry (tg), differential thermal analysis (dta), differential scanning calorimetry (dsc), and dynamic mechanical analysis (dma). [Pg.149]

A number of analytical techniques such as FTIR spectroscopy,65-66 13C NMR,67,68 solid-state 13 C NMR,69 GPC or size exclusion chromatography (SEC),67-72 HPLC,73 mass spectrometric analysis,74 differential scanning calorimetry (DSC),67 75 76 and dynamic mechanical analysis (DMA)77 78 have been utilized to characterize resole syntheses and crosslinking reactions. Packed-column supercritical fluid chromatography with a negative-ion atmospheric pressure chemical ionization mass spectrometric detector has also been used to separate and characterize resoles resins.79 This section provides some examples of how these techniques are used in practical applications. [Pg.407]

Dynamic DSC, 409. See also Differential scanning calorimetry (DSC) Dynamic mechanical analysis (DMA), 138, 163, 241-242, 407, 409... [Pg.583]

Dynamic mechanical anlaysis (DMA) measurements were done on a Rheometrics RDS-7700 rheometer in torsional rectangular geometry mode using 60 x 12 x 3 mm samples at 0.05% strain and 1 Hz. Differential scanning calorimetry (DSC), thermomechanical analysis (TMA), and thermogravimetric analysis (TGA) were performed on a Perkin-Elmer 7000 thermal analysis system. [Pg.43]

Bisphthalonitrile monomers were cured neat, with nucleophilic and redox co-reactants, or in combination with a reactive diluent. Dynamic mechanical measurements on the resulting polymers from -150 to +300°C turn up several differences attributable to differences in network structure. Rheovibron results were supplemented with solvent extraction, differential scanning calorimetry (DSC), vapor pressure osmometry, and infrared spectroscopy to characterize the state of cure. [Pg.43]

The complex sorption behavior of the water in amine-epoxy thermosets is discussed and related to depression of the mechanical properties. The hypothesized sorption modes and the corresponding mechanisms of plasticization are discussed on the basis of experimental vapor and liquid sorption tests, differential scanning calorimetry (DSC), thermomechanical analysis (TMA) and dynamic mechanical analysis. In particular, two different types of epoxy materials have been chosen low-performance systems of diglycidyl ether of bisphenol-A (DGEBA) cured with linear amines, and high-performance formulations based on aromatic amine-cured tetraglycidyldiamino diphenylmethane (TGDDM) which are commonly used as matrices for carbon fiber composites. [Pg.69]

Most of the physical properties of the polymer (heat capacity, expansion coefficient, storage modulus, gas permeability, refractive index, etc.) undergo a discontinuous variation at the glass transition. The most frequently used methods to determine Tg are differential scanning calorimetry (DSC), thermomechanical analysis (TMA), and dynamic mechanical thermal analysis (DMTA). But several other techniques may be also employed, such as the measurement of the complex dielectric permittivity as a function of temperature. The shape of variation of corresponding properties is shown in Fig. 4.1. [Pg.133]

Tg can be determined by dynamic mechanical experiments from the log E-T diagram, but also from the maximum in the tan 8 - T curve. Another possibility is differential scanning calorimetry (DSC). [Pg.164]

Thermal analysis is a group of techniques in which a physical property of a substance is measured as a function of temperature when the sample is subjected to a controlled temperature program. Single techniques, such as thermogravimetry (TG), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), dielectric thermal analysis, etc., provide important information on the thermal behaviour of materials. However, for polymer characterisation, for instance in case of degradation, further analysis is required, particularly because all of the techniques listed above mainly describe materials only from a physical point of view. A hyphenated thermal analyser is a powerful tool to yield the much-needed additional chemical information. In this paper we will concentrate on simultaneous thermogravimetric techniques. [Pg.1]


See other pages where Dynamic Scanning Calorimetry DSC is mentioned: [Pg.179]    [Pg.282]    [Pg.177]    [Pg.358]    [Pg.10]    [Pg.86]    [Pg.179]    [Pg.282]    [Pg.177]    [Pg.358]    [Pg.10]    [Pg.86]    [Pg.298]    [Pg.60]    [Pg.138]    [Pg.582]    [Pg.276]    [Pg.462]    [Pg.507]    [Pg.306]    [Pg.258]    [Pg.35]    [Pg.199]    [Pg.254]    [Pg.29]    [Pg.144]    [Pg.456]    [Pg.47]    [Pg.298]    [Pg.366]    [Pg.247]    [Pg.218]    [Pg.804]    [Pg.599]    [Pg.93]    [Pg.296]    [Pg.232]    [Pg.70]    [Pg.588]    [Pg.207]   


SEARCH



Calorimetry, DSC

DSC scan

Dynamic DSC

Scanning Calorimetry (DSC)

© 2024 chempedia.info