Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dynamic mechanical behavior, evaluation

Dynamic mechanical characteristics, mostly in the form of the temperature response of shear or Young s modulus and mechanical loss, have been used with considerable success for the analysis of multiphase polymer systems. In many cases, however, the results were evaluated rather qualitatively. One purpose of this report is to demonstrate that it is possible to get quantitative information on phase volumes and phase structure by using existing theories of elastic moduli of composite materials. Furthermore, some special anomalies of the dynamic mechanical behavior of two-phase systems having a rubbery phase dispersed within a rigid matrix are discussed these anomalies arise from the energy distribution and from mechanical interactions between the phases. [Pg.81]

The degradation follows an apparent first order reaction with an initial rate (up to 2000 hours exposure in a QUV apparatus) that is faster than the subsequent rate. An assessment of the kinetic data in terms of proposed reaction mechanisms and concurrent changes in properties such as dynamic mechanical behavior can serve as a preliminary basis for evaluation of the material s ability to retain useful properties for time periods consistent with certain design requirements for solar energy system applications. [Pg.275]

Based on damping theory (Kim and Sperling 1997 Sophiea et al. 1994a), the damping behavior of a polymer can be evaluated from its dynamic mechanical behavior by expressing it as the area under the tan 8 versus temperature curve (Keskkula et al. 1971) or the area under the linear loss modulus versus temperature... [Pg.705]

Dynamic mechanical property (DMP) measurements are used to evaluate the suitability of a polymer for a particular use in sound and vibration damping. Since the dynamic mechanical properties of a polyurethane are known to be affected by polymer morphology (4), it is important to establish the crystallization and melting behavior as well as the glass transition temperature of each polymer. Differential scanning calorimetry (DSC) was used to determine these properties and the data used to interpret the dynamic mechanical property results. [Pg.282]

This chapter summarizes many of the contributions that the recoil technique of generating excited radiotracer atoms in the presence of a thermal environment is making to the field of chemical dynamics. Specific topics discussed critically include characterization of the generation and behavior of excited molecules including fragmentation kinetics and energy transfer, measurement of thermal and hot kinetic parameters, and studies of reaction mechanisms and stereochemistry as a function of reaction energy. Distinctive features that provide unique approaches to dynamical problems are evaluated in detail and the complementarity with more conventional techniques is addressed. Prospects for future applications are also presented. [Pg.123]

The glass transition temperature (Tg) of cellulose reinforced composites is an important parameter which influences different properties of the resulting composite such as mechanical behavior, matrix chains dynamics and swelling behavior. Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) are used to evaluate the Tg value of cellulose nanocomposites. In some cases, the addition of cellulose nanocrystals into polymer matrices does not seem to affect the... [Pg.40]

Dynamic mechanical analyzers can be divided into resonant and defined frequency instruments. The torsion pendulum just described is, for example, a resonant instrument. The schematic of a defined-frequency instrument is shown in Fig. 4.155. The basic elements are the force generator and the strain meter. Signals of both are collected by the module CPU, the central processing unit, and transmitted to the computer for data evaluation. The diagram is drawn after a commercial DMA which was produced by Seiko. At the bottom of Fig. 4.155, a typical sample behavior for a DMA experiment is sketched. An applied sinusoidal stress, o, is followed with a phase lag, 6, by the strain, e. The analysis of such data in terms of the dynamic moduli (stress-strain ratios, see Fig. 4.143) at different frequencies and temperature is the subject of DMA. [Pg.413]

Dynamic mechanical analysis measures changes in mechanical behavior, such as modulus and damping as a function of temperature, time, frequency, stress, or combinations of these parameters. The technique also measures the modulus (stiffness) and damping (energy dissipation) properties of materials as they are deformed under periodic stress. Such measurements provide quantitative and qualitative information about the performance of materials. The technique can be used to evaluate reinforced and unreinforced polymers, elastomers, viscous thermoset liquids, composite coating and adhesives, and materials that exhibit time, frequency, and temperature effects or mechanical properties because of their viscoelastic behavior. [Pg.34]

As discussed iu Section 2.16, dynamic mechanical analysis offers an enhanced means of evaluating the performance of polymeric systems at elevated temperatures. It provides a complete profile of modulus versus temperatures, as well as measurement of mechanical damping. Operating in the creep mode and coupled with the careful use of time-temperature superpositioning, projections can be made regarding the long-term time-dependent behavior under constant load. This provides a much more realistic evaluation of the short- and long-term capabilities of a resin system. [Pg.41]

Dynamic mechanical analysis in polymeric multiphase systems in solid state, as part of rheology, is associated with oscillatory tests that are employed to investigate all kinds of viscoelastic material from the point of view of flow and deformation behavior. In particular, it evaluates the molecular mobility in polymers, the pattern of which may be an indication of phase-separated systems. Although there are certain preferred tools for visual examination of phenomena for these kinds of systems, dynamic mechanical analysis has the advantage of examination in dynamic conditions and of the prediction of properties. [Pg.365]

Hazarika A, Maji TK (2014c) Strain sensing behavior and dynamic mechanical properties of carbon nanotubes/nanoclay reinforced wood polymCT nanocomposite. Chem Eng J 247 33-41 Hazarika A, Maji TK (2014d) Thermal decomposition kinetics, flammability, and mechanical property smdy of wood polymtar nanocomposite. J Therm Anal Calorim 115 1679-1691 Hazarika A, Mandal M, Maji TK (2014) Dynamic mechanical analysis, biodegradability and thermal stability of wood polymer nanocomposites. Compos Part B 60 568-576 Hetzer M, Kee D (2008) Wootl/polymer/nanoclay composites, environmentally friendly sustainable technology a review. Chem Eng Res Des 86 1083-1093 Hill CAS, Abdirl KHPS, Hale MD (1998) A study of the potential of acetylation to improve the properties of plant fibres, frrd Crops Prod 8 53-63 Hoffmann MR, Martin ST, Choi WY, Bahnemann W (1995) Environmental application of semiconductm photocatalysis. Chem Rev 95 69-96 Huda MS, Drzal LT, Misra M, Mohanty AK (2(K)6) Wood-fiber-reinforced poly(lactic acid) composites evaluation of the physicomechanical and morphological properties. J AppI Polym Sci 102 4856-4869... [Pg.255]

The environmental model is the product of a problem analysis. It forms the basis for the development of behavioral models of the process. This holds for physical models, in which the internal dynamic mechanism is described by pltysical laws, as well as empirical (black box) models, in which only overall dynamic relationships between process inputs and outputs are formulated. The environmental model can also be used for the development of a process control scheme. By evaluating the static (power of control) and dynamic relationships (speed of control) between process inputs and outputs, the process control scheme can be selected. In general no dynamic model of the process is required yet at this stage. This is the starting point that is used in the chapters on process control. [Pg.57]

To consolidate the experimental screening data quantitatively it is desirable to obtain information on the fluid mechanics of the reactant flow in the reactor. Experimental data are difficult to evaluate if the experimental conditions and, especially, the fluid dynamic behavior of the reactants flow are not known. This is, for example, the case in a typical tubular reactor filled with a packed bed of porous beads. The porosity of the beads in combination with the unknown flow of the reactants around the beads makes it difficult to describe the flow close to the catalyst surface. A way to achieve a well-described flow in the reactor is to reduce its dimensions. This reduces the Reynolds number to a region of laminar flow conditions, which can be described analytically. [Pg.90]

In conclusion, the results presented in this chapter demonstrate the extreme versatility of AW devices for the characterization of materials. The inherent sensitivity of AW properties to the mechanical and electrical properties of thin films can be used to advantage to directly monitor a wide variety of film properties. Since the properties and behavior of thin-film materials can be very different from those of similar bulk materials, this ability to directly measure thin film properties can be a significant advantage in materials research and development. The ability to use thin films instead of bulk samples has the added advantage that the time required to perform an evaluation of dynamic processes such as diffusion and corrosion can be greatly decreased. The number of applications of AW devices to thin-film characterization continues to increase, and is limited only by the ingenuity of AW device researchers and developers. [Pg.212]


See other pages where Dynamic mechanical behavior, evaluation is mentioned: [Pg.44]    [Pg.435]    [Pg.467]    [Pg.307]    [Pg.210]    [Pg.81]    [Pg.322]    [Pg.335]    [Pg.501]    [Pg.499]    [Pg.531]    [Pg.371]    [Pg.278]    [Pg.501]    [Pg.423]    [Pg.590]    [Pg.495]    [Pg.262]    [Pg.69]    [Pg.261]    [Pg.381]    [Pg.385]    [Pg.52]    [Pg.233]    [Pg.572]    [Pg.461]    [Pg.48]    [Pg.214]    [Pg.4]    [Pg.594]    [Pg.71]    [Pg.84]    [Pg.127]    [Pg.33]    [Pg.1649]   


SEARCH



Dynamic behavior

Dynamic mechanical behavior

Dynamic mechanisms

Dynamical mechanical

Mechanical behavior

Mechanical evaluation

© 2024 chempedia.info