Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Divinylbenzene production

Divinylbenzene. This is a specialty monomer used primarily to make cross-linked polystyrene resins. Pure divinylbenzene (DVB) monomer is highly reactive polymericaHy and is impractical to produce and store. Commercial DVB monomer (76—79) is generally manufactured and suppHed as mixtures of m- and -divinylbenzenes and ethylvinylbenzenes. DVB products are designated by commercial grades in accordance with the divinylbenzene content. Physical properties of DVB-22 and DVB-55 are shown in Table 10. Typical analyses of DVB-22 and DVB-55 are shown in Table 11. Divinylbenzene [1321 -74-0] is readily polymerized to give britde insoluble polymers even at ambient temperatures. The product is heavily inhibited with TBC and sulfur to minimize polymerization and oxidation. [Pg.489]

The pore size, the pore-size distribution, and the surface area of organic polymeric supports can be controlled easily during production by precipitation processes that take place during the conversion of liquid microdroplets to solid microbeads. For example, polystyrene beads produced without cross-linked agents or diluent are nonporous or contain very small pores. However, by using bigb divinylbenzene (DVB) concentrations and monomer diluents, polymer beads with wide porosities and pore sizes can be produced, depending on the proportion of DVB and monomer diluent. Control of porosity by means of monomer diluent has been extensively studied for polystyrene (3-6) and polymethacrylate (7-10). [Pg.6]

Synthetic organic polymers, which are used as polymeric supports for chromatography, as catalysts, as solid-phase supports for peptide and oligonucleotide synthesis, and for diagnosis, are based mainly on polystyrene, polystyrene-divinylbenzene, polyacrylamide, polymethacrylates, and polyvinyl alcohols. A conventional suspension of polymerization is usually used to produce these organic polymeric supports, especially in large-scale industrial production. [Pg.7]

For organic SEC separations the use of polystyrene/divinylbenzene (PS/ DVB) particles is almost universal throughout the industry. Polymer Laboratories PS/DVB material, PLgel, which is produced in a series of individual pore sizes, formed the basis for the original product line of SEC columns. Developments in the refinement of particle sizing introduced the benefits of smaller particle size and more efficient columns, which significantly reduced SEC analysis time through a reduction in the number of columns required for... [Pg.349]

The next major bonded phase project was the development of the GBR resin, which stands for modified glucose bonded on both the backbone and the ring of basic PDVB gels. The manufacture of this product was ultimately achieved, as outlined later. The gel is first brominated, which places bromine atoms on both tertiary hydrogens of the PDVB. The brominated gel is then reacted with chlorosulfonic acid, and a specially treated reduced D-glucosamine is coupled to the gel. This process has the potential to covalently bond up to three sugar residues to each available divinylbenzene residue in the PDVB polymer. The exact reaction conditions used are proprietary however, the surface of the finished product is believed to look similar to Figs. 13.11 and 13.12. [Pg.374]

Purification of the activation products (PMs). The methylamine activation product dissolved in methanol is purified by chromatography, first on a column of silica gel using a mixed solvent of chloroform/ethanol, followed by reversed-phase HPLC on a column of divinylbenzene resin (such as Jordi Reversed-Phase and Hamilton PRP-1) using various solvent systems suitable for the target substance (for example, acetonitrile/water containing 0.15% acetic acid). [Pg.284]

The term IPN was first used in 1960 to describe the apparently homogeneous product obtained from styrene crosslinked with divinylbenzene. IPNs were prepared from this system by taking a crosslinked poly(styrene) network and allowing it to absorb a controlled amount of styrene and a 50% divinylbenzene-toluene solution containing initiator. Polymerisation of this latter component led to the formation of an IPN, the density of which was... [Pg.153]

Nonlinear addition polymers are readily obtained by copolymerizing a divinyl compound (e.g., divinylbenzene) with the vinyl monomer (e.g., styrene), as already mentioned. Products so obtained exhibit the insolubility and other characteristics of space-network structures and are entirely analogous structurally to the space-network polymers produced by the condensation of polyfunctional compounds. Owing to... [Pg.54]

Allen (106) also studied cobalt hydroformylation with a polymer-bound catalyst. The polymer was formed from diphenyl-p-styrylphosphine cross-linked with divinylbenzene. 2-Hexene was the substrate, and reaction conditions were 175°C and 1500-3000 psi of 1/1 H2/CO. The product aldehyde was 55% linear, and the effluent product solution contained 20-50 ppm cobalt. [Pg.48]

PdCI2 and Pd(OAc)2 anchored on a diphenylphosphinated polymer of styrene-divinylbenzene were used as the catalyst for the reaction of acetic acid. The product distribution was essentially the same for the reactions catalyzed by both homogeneous and anchored palladium catalysts (53). [Pg.157]

In the early days of polymer science, when polystyrene became a commercial product, insolubility was sometimes observed which was not expected from the functionality of this monomer. Staudinger and Heuer [2] could show that this insolubility was due to small amounts of tetrafunctional divinylbenzene present in styrene as an impurity from its synthesis. As little as 0.02 mass % is sufficient to make polystyrene of a molecular mass of 2001000 insoluble [3]. This knowledge and the limitations of the technical processing of insoluble and non-fusible polymers as compared with linear or branched polymers explains why, over many years, research on the polymerization of crosslinking monomers alone or the copolymerization of bifunctional monomers with large fractions of crosslinking monomers was scarcely studied. [Pg.139]

Waters (see 2006-2007 Catalog, SPE products) Oasis HLB Divinylbenzene-N-vinyl-pyrrolidone copolymer Reversed phase with some hydrogen bond acceptor and dipolar reactivity Rosuvastatin (71) NSAIDs (72) fexofenadine (73) catechins (74) valproic acid (75)... [Pg.6]

Phenomenex (see 2006 Catalog, SPE products) Strata-X Polar functionalized styrene-divinylbenzene polymer Reversed phase with weakly acidic, hydrogen bond donor, acceptor, and dipolar interactions Cetirizine (76) pyridoxine (77) omeprazole (78) mycophenolic acid (79) 25-hydroxy-vitamin D3 (80)... [Pg.6]

Isobutylene-based (C-4) process, for methyl methacrylate production, 16 244,254r-257 Isobutylene—isoprene-divinylbenzene terpolymers, 4 437... [Pg.494]

With a view to producing catalysts that can easily be removed from reaction products, typical phase-transfer catalysts such as onium salts, crown ethers, and cryptands have been immobilized on polymer supports. The use of such catalysts in liquid-liquid and liquid-solid two-phase systems has been described as triphase catalysis (Regen, 1975, 1977). Cinquini et al. (1976) have compared the activities of catalysts consisting of ligands bound to chloromethylated polystyrene cross-linked with 2 or 4% divinylbenzene and having different densities of catalytic sites ([126], [127], [ 132]—[ 135]) in the... [Pg.333]

Direct irradiation of orf/io-divinylbenzene (164) leads to the formation of the benzobi-cyclo[3.1.0]hex-2-ene isomer 167 as the major product. Deuterium labelling and methanol trapping experiments suggested the intermediacy of both 165 and 166, the expected products of irradiation of a benzannelated 1,3,5-hexatriene (equation 62)144. [Pg.244]


See other pages where Divinylbenzene production is mentioned: [Pg.490]    [Pg.490]    [Pg.490]    [Pg.490]    [Pg.490]    [Pg.490]    [Pg.478]    [Pg.456]    [Pg.435]    [Pg.14]    [Pg.87]    [Pg.714]    [Pg.388]    [Pg.369]    [Pg.3]    [Pg.162]    [Pg.83]    [Pg.207]    [Pg.82]    [Pg.177]    [Pg.128]    [Pg.27]    [Pg.226]    [Pg.119]    [Pg.151]    [Pg.1587]    [Pg.113]    [Pg.50]    [Pg.192]    [Pg.461]    [Pg.533]    [Pg.119]    [Pg.138]    [Pg.133]    [Pg.100]    [Pg.36]    [Pg.114]   
See also in sourсe #XX -- [ Pg.145 ]




SEARCH



Divinylbenzene

Divinylbenzenes

© 2024 chempedia.info