Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Distillation columns design calculations

Distillation Column Design Trays 16. Calculate the downcomer escape area ... [Pg.757]

Since few liquid mixtures are ideal, vapor-liquid equilibrium calculations are somewhat more complicated than for the cases in the previous section, and the phase diagrams for nonideal systems can be more structured than Figs. 10.1-1 to 10.1-6. These complications arise from the (nonlinear) composition dependence of the species activity coefficients. For example, as a result of the composition dependence of yt, the vapor-liquid equilibrium pressure in a fixed-temperature experiment will no longer be a linear function of mole fraction, so that no.nideal solutions exhibit deviations from Raoult s law. However, all the calculational methods discussed in the previous section for ideal mixtures, including distillation column design, can be used for nonideal mix-, tures, as long as the composition dependence of the activity coefficients is taken into account. [Pg.519]

The feed to a pentane isomerization process consists of 650 kmol/hr of n-pentane and 300 kmol/hr of isopentane. The effluent from the catalytic isomerization reactor will contain 6.5 moles of isopentane for every mole of n-pentane. The catalyst prevents the formation of neopentane. If the isopentane product, produced by separating isopentane from n-pentane by distillation, is to contain only 2 wt% n-pentane and the separation system is to be placed before the reactor, calculate the total flow rate and composition of the reactor effluent, the combined feed to the reactor, and the bottoms product from the distillation column. Design the distillation column. Repeat the material balance calculations and the design of the distillation column if the separation system is placed after the reactor. Based on your results and without determining any capital or operating costs, which separation system placement is preferred ... [Pg.1065]

The task of designing of extractive distillation columns, besides calculation of section trajectories, includes a number of subtasks. These are the same subtasks as for two-section columns and additional subtasks of determination of minimum entrainer flow rate and of choice of design entrainer flow rate. Optimal designing of extractive or autoextractive distillation includes optimization by two parameters - by entrainer flow rate and by reflux number. Figure 7.14 shows influence of entrainer flow rate on section trajectories at fixed value of parameter a = LfV)mlK j (as is shown in Section 6.4 (L/y) = K j). [Pg.248]

The elegance and simplicity of the McCabe-Thiele method make it tempting for the beginning student to view it as the centerpiece of binary distillation column design. There are, in fact, a number of key questions that need to be addressed before proceeding with plate calculations, setting reflux rations, and the like. [Pg.354]

We proceed now to use bubble and dew point calculations in the following Examples that represent typical applications of vapor-liquid equilibrium to distillation column design. [Pg.449]

General Properties of Computerized Physical Property System. Flow-sheeting calculations tend to have voracious appetites for physical property estimations. To model a distillation column one may request estimates for chemical potential (or fugacity) and for enthalpies 10,000 or more times. Depending on the complexity of the property methods used, these calculations could represent 80% or more of the computer time requited to do a simulation. The design of the physical property estimation system must therefore be done with extreme care. [Pg.75]

Process simulators stop generally at the process specifications for the equipment. For the detailed mechanical design of the equipment, such as heat exchangers and distillation columns, stand-alone programs are often used. They make process calculations, size the equipment, calculate thermal and mechanical stresses, design mechanical support of the parts of the equipment, design inlet and outlet nozzles, etc. [Pg.77]

For shortcut design of a distillation column, the minimum reflux calculation should be made first. [Pg.51]

The design of a distillation column requires a reboiler operating at 2.23 psia (vapor space above bottom liquid). The heat duty is 1,528,600 Btu/hr. The properties of the acrylonitrile mixture have been calculated to be... [Pg.199]

If the composition (or flow-rate) of one stream is fixed by internal or external constraints, this may fix the composition and flows of other process streams. In Chapter 1, the relationship between the process variables, the design variables and design equations was discussed. If sufficient design variables are fixed by external constraints, or by the designer, then the other stream flows round a unit will be uniquely determined. For example, if the composition of one product stream from a distillation column is fixed by a product specification, or if an azeotrope is formed, then the other stream composition can be calculated directly from the feed compositions see Section 2.10. The feed composition would be fixed by the outlet composition of the preceding unit. [Pg.144]

There is no need to calculate the reflux flow to the distillation column that will be determined by the column design. [Pg.191]

Fredenslund, A., Gmehling, J., Michelsen, M. L., Rasmussen, P. and Prausnitz, J. M. (1977a) Ind. Eng. Chem. Proc. Des. and Dev. 16, 450. Computerized design of multicomponent distillation columns using the UNIFAC group contribution method for calculation of activity coefficients. [Pg.354]

An exact calculation of inventory is difficult in the conceptual design phase, since the size of equipment is not usually known. The mass flows in the process are however known from the design capasity of the process. Therefore it is practical to base the estimation of inventory on mass flows and an estimated residence time. Consequently the inventory has been included to the ISI as a mass flow in the ISBL equipment including recycles with one hour nominal residence time for each process vessel (e.g. reactor, distillation column etc). For large storage tanks the size should be estimated. The total inventory is the sum of inventories of all process vessels. [Pg.70]

Continuous binary distillation is illustrated by the simulation example CON-STILL. Here the dynamic simulation example is seen as a valuable adjunct to steady state design calculations, since with MADONNA the most important column design parameters (total column plate number, feed plate location and reflux ratio) come under the direct control of the simulator as facilitated by the use of sliders. Provided that sufficient simulation time is allowed for the column conditions to reach steady state, the resultant steady state profiles of composition versus plate number are easily obtained. In this way, the effects of changes in reflux ratio or choice of the optimum plate location on the resultant steady state profiles become almost immediately apparent. [Pg.165]

Figure 1 lists the major industrial processes that use thermodynamic data and the kind of data that are relevant. The design and use of distillation columns are the largest consumers of thermodynamic data. The feed stream to most industrial columns contains at least several components. The predication of the operating characteristics of such columns requires complicated calculations, and much computer software has been written... [Pg.468]

Norman, W. S. Trans. Inst. Chem. Eng. 23 (1945) 66. The dehydration of ethanol by azeotropic distillation. Ibid. 89. Design calculations for azeotropic dehydration columns. [Pg.651]

Most of the work in the estimating process relies on the application of well-established factors to a basic figure of the cost of all of the main items of the plant, as delivered to the site entrance. This figure has thus to be calculated as accurately as possible, based upon the plant design as available at the time of the estimate. It depends upon the identification and rough sizing of the key process plant items (such as reactors, distillation columns, heat exchangers, and so on), and the determination of approximate delivered prices for these items, from charts and other information published in textbooks, journals and on the internet. [Pg.283]

Thus, the key result from the tray-by-tray calculation is that the column design must ensure complete alcohol consumption in the reactive zone, only lauric acid and water are allowed in the top vapor stream. The column behaves more as a reactive absorber than reactive distillation. A higher number of equilibrium stages... [Pg.252]

Rmin and the corresponding number of trays calculated ( 2N J. The shortcut models were replaced by rigorous RADFRAC units, where the reflux and distillate feed ratio were adjusted by means of design specifications, in order to meet the desired separation. The trays were sized using Aspen s facilities. Finally, the dimensions of the reflux drum and column sump were found based on a residence time of 5 min and aspect ratio H D = 2 1. Table 9.7 presents the results of distillation column sizing. [Pg.281]

Fast and satisfactory mass transfer calculations are necessary since we may have to repeat such calculations many times for a rate-based distillation column model or two-phase flow with mass transfer between the phases in the design and simulation process. The generalized matrix method may be used for multicomponent mass transfer calculations. The generalized matrix method utilizes the Maxwell-Stefan model with the linearized film model for diffusion flux, assuming a constant diffusion coefficient matrix and total concentration in the diffusion region. In an isotropic medium, Fick s law may describe the multicomponent molecular mass transfer at a specified temperature and pressure, assuming independent diffusion of the species in a fluid mixture. Such independent diffusion, however, is only an approximation in the following cases (i) diffusion of a dilute component in a solvent, (ii) diffusion of various components with identical diffusion properties, and (iii) diffusion in a binary mixture. [Pg.328]

The design of azeotropic or extractive distillation columns, as with con-A ventional columns, demands a knowledge of the vapor-liquid equilibrium properties of the system to be distilled. Such knowledge is obtained experimentally or calculated from other properties of the components of the system. Since the systems in azeotropic or extractive distillation processes have at least three components, direct measurement of the equilibrium properties is laborious and, therefore, expensive, so methods of calculation of these data are desirable. [Pg.102]


See other pages where Distillation columns design calculations is mentioned: [Pg.414]    [Pg.220]    [Pg.502]    [Pg.414]    [Pg.584]    [Pg.113]    [Pg.182]    [Pg.78]    [Pg.182]    [Pg.1317]    [Pg.498]    [Pg.58]    [Pg.250]    [Pg.213]    [Pg.182]    [Pg.381]    [Pg.110]    [Pg.114]    [Pg.229]    [Pg.245]    [Pg.260]    [Pg.5]    [Pg.114]    [Pg.77]    [Pg.157]    [Pg.1065]   
See also in sourсe #XX -- [ Pg.166 ]




SEARCH



Column, calculation

Columns designing

Design Calculation of Extractive Distillation Columns

Design calculations

Design calculations distillation

Distillation calculations

Distillation columns design

Distillation design

Distilling columns

© 2024 chempedia.info