Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Direct measurement system

Direct measurement systems are usually used when there is a unit of production or an event that is captured in an automated system such as a computer. The count is very reliable because it counts events that are actually happening. [Pg.97]

To gain an understanding of the composition of the reservoir rock, inter-reservoir seals and the reservoir pore system it is desirable to obtain an undisturbed and continuous reservoir core sample. Cores are also used to establish physical rock properties by direct measurements in a laboratory. They allow description of the depositional environment, sedimentary features and the diagenetic history of the sequence. [Pg.126]

The measuring system composed of the Wirotest type equipment, the direction probe and reference sample are subject to calibration while using a strength machine. [Pg.382]

In order to be able to reduce prices, even more and more test- and measurement systems are integrated on PC-boards. The powerful and inexpensive PC eomponents can be directly u.sed for these (virtual) instruments. The limited dimensions of the PC boards require a reduction to the absolute necessity of the electronic components. Analogue signal proeessing must carried out by software as far as possible. [Pg.855]

K. Kurihara, Direct Measurement of Surface Forces of Supramolecular Systems Structures and Interactions, in Microchemistry, H. Masuhara et al., Elsevier Science, 1994. [Pg.569]

Richetti P and Ke kicheff P 1992 Direct measurement of depletion and structural forces in a micellar system Phys. Rev. Lett. 68 1951-4... [Pg.2607]

As botli processes, reduction and oxidation, take place on tlie same electrode surface (a short-circuited system), it is not possible to directly measure tlie corrosion current. Experimentally, only tlie sum of tlie anodic and catliodic... [Pg.2719]

Now, in principle, the angle of contact between a liquid and a solid surface can have a value anywhere between 0° and 180°, the actual value depending on the particular system. In practice 6 is very difficult to determine with accuracy even for a macroscopic system such as a liquid droplet resting on a plate, and for a liquid present in a pore having dimensions in the mesopore range is virtually impossible of direct measurement. In applications of the Kelvin equation, therefore, it is almost invariably assumed, mainly on grounds of simplicity, that 0 = 0 (cos 6 = 1). In view of the arbitrary nature of this assumption it is not surprising that the subject has attracted attention from theoreticians. [Pg.123]

Sorption Rates in Batch Systems. Direct measurement of the uptake rate by gravimetric, volumetric, or pie2ometric methods is widely used as a means of measuring intraparticle diffusivities. Diffusive transport within a particle may be represented by the Fickian diffusion equation, which, in spherical coordinates, takes the form... [Pg.259]

AH the foregoing faciUties form part of the spectmm of options that, in addition to the permanent system data bank, enable the engineer to get the most out of a flow-sheeting system. The following Hst shows the physical properties that are often required for process simulation. The methods of estimating these properties, when direct measurements are not available, are indicated in the references following the properties (also see Thermodynamic properties). [Pg.76]

Acts before the effect of a disturbance has been felt by the system Requires measurement of all possible disturbances and their direct measurement... [Pg.731]

This handbook deals only with systems involving metallic materials and electrolytes. Both partners to the reaction are conductors. In corrosion reactions a partial electrochemical step occurs that is influenced by electrical variables. These include the electric current I flowing through the metal/electrolyte phase boundary, and the potential difference A( = 0, - arising at the interface. and represent the electric potentials of the partners to the reaction immediately at the interface. The potential difference A0 is not directly measurable. Therefore, instead the voltage U of the cell Me /metal/electrolyte/reference electrode/Me is measured as the conventional electrode potential of the metal. The connection to the voltmeter is made of the same conductor metal Me. The potential difference - 0 is negligibly small then since A0g = 0b - 0ei ... [Pg.29]

The comparison with experiment can be made at several levels. The first, and most common, is in the comparison of derived quantities that are not directly measurable, for example, a set of average crystal coordinates or a diffusion constant. A comparison at this level is convenient in that the quantities involved describe directly the structure and dynamics of the system. However, the obtainment of these quantities, from experiment and/or simulation, may require approximation and model-dependent data analysis. For example, to obtain experimentally a set of average crystallographic coordinates, a physical model to interpret an electron density map must be imposed. To avoid these problems the comparison can be made at the level of the measured quantities themselves, such as diffraction intensities or dynamic structure factors. A comparison at this level still involves some approximation. For example, background corrections have to made in the experimental data reduction. However, fewer approximations are necessary for the structure and dynamics of the sample itself, and comparison with experiment is normally more direct. This approach requires a little more work on the part of the computer simulation team, because methods for calculating experimental intensities from simulation configurations must be developed. The comparisons made here are of experimentally measurable quantities. [Pg.238]

The specification of wires can be confusing. All wires diameters are based upon the American Wire Gauge (AWG) table, published in the early 20th century. The metric countries directly converted these dimension (inches) to millimeters and created what is now the lEC R20 wire table. This is shown below in both measurement systems in Table F-t. [Pg.251]

The development of devices that provide a direct measure of stress or particle velocity led to observations of new rate-dependent mechanical responses and showed the power of such time-resolved measurements. The quartz gauge was the first of these devices with nanosecond time resolution, but its upper operating limit of 4 GPa limited its application. The development of the VISAR has had the most substantial impact on capabilities. VISAR systems, with time-resolution approaching 1 ns and the ability to work to pressures of 100 GPa, provide capabilities that have substantially altered the scientific descriptions of shock-compressed matter. [Pg.62]

The added capability of calculating unknown values based on measured inputs will greatly enhance the system capabilities. For example, the neither fouling factor nor efficiency of a heat exchanger can be directly measured. A predictive maintenance system that can automatically calculate these values based on the measured flow, pressure and temperature data would enable the program to automatically trend, log and alarm deviations in these unknown, critical parameters. [Pg.805]

An electrical resistance methods which directly measures loss of metal from a probe installed in the corrosive system under study is described in Section 19.3. It is reported that corrosion equivalent to a thickness loss of as little as 2-5 X 10 cm can be detected . This technique is most useful as a means of monitoring steps taken to reduce corrosion, e.g. by inhibitors, or to detect changes in the corrosivity of process streams. Electrical methods of determining corrosion rates are considered subsequently. [Pg.991]

Spectrophotometric methods may often be applied directly to the solvent extract utilising the absorption of the extracted species in the ultraviolet or visible region. A typical example is the extraction and determination of nickel as dimethylglyoximate in chloroform by measuring the absorption of the complex at 366 nm. Direct measurement of absorbance may also be made with appropriate ion association complexes, e.g. the ferroin anionic detergent system, but improved results can sometimes be obtained by developing a chelate complex after extraction. An example is the extraction of uranyl nitrate from nitric acid into tributyl phosphate and the subsequent addition of dibenzoylmethane to the solvent to form a soluble coloured chelate. [Pg.174]

Trustworthy thermodynamic data for metal solutions have been very scarce until recently,25 and even now they are accumulating only slowly because of the severe experimental difficulties associated with their measurement. Thermodynamic activities of the component of a metallic solution may be measured by high-temperature galvanic cells,44 by the measurement of the vapor pressure of the individual components, or by equilibration of the metal system with a mixture of gases able to interact with one of the components in the metal.26 Usually, the activity of only one of the components in a binary metallic solution can be directly measured the activity of the other is calculated via the Gibbs-Duhem equation if the activity of the first has been measured over a sufficiently extensive range of composition. [Pg.121]

There are different techniques to evaluate the quantitative stress level in prototype and production products. They can predict potential problems. Included is the use of electrical resistance strain gauges bonded on the surface of the product. This popular method identifies external and internal stresses. Their various configurations are made to identify stresses in different directions. This technique has been extensively used for over a half century on very small to very large products such as toys to airplanes. There is the optical strain measurement system that is based on the principles of optical interference. It uses Moire, laser, or holographic interferometry (2,3,20). [Pg.302]


See other pages where Direct measurement system is mentioned: [Pg.382]    [Pg.552]    [Pg.525]    [Pg.540]    [Pg.382]    [Pg.552]    [Pg.525]    [Pg.540]    [Pg.101]    [Pg.236]    [Pg.720]    [Pg.802]    [Pg.1902]    [Pg.2493]    [Pg.2826]    [Pg.108]    [Pg.428]    [Pg.95]    [Pg.394]    [Pg.1686]    [Pg.2162]    [Pg.352]    [Pg.296]    [Pg.312]    [Pg.612]    [Pg.743]    [Pg.201]    [Pg.511]    [Pg.711]    [Pg.627]    [Pg.461]    [Pg.269]    [Pg.778]   
See also in sourсe #XX -- [ Pg.97 ]




SEARCH



Direct measure

Direct measurement

Direct system

Directly measured

Measurement systems

Measures Systems

© 2024 chempedia.info