Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

1.3- dipolar cycloaddition synthesis

His research interests deal with the chemistry of cyclopropane derivatives, 1,3-dipolar cycloadditions, synthesis of natural compounds and biologically active analogues. Recently, the research activity is also dedicated to synthetic studies for the production of new materials light-harvesting antenna systems and functionalized organogelators. [Pg.408]

Scheme 5.20 One-pot, three-component coupling-1,3-dipolar cycloaddition synthesis of indolizines. Scheme 5.20 One-pot, three-component coupling-1,3-dipolar cycloaddition synthesis of indolizines.
Broggini G, Zecchi G (1999) Pyrrolizidine and indolizidine syntheses involving 1,3-dipolar cycloadditions. Synthesis 905-917... [Pg.85]

Scheme 8. Asymmetric 1,3-dipolar cycloaddition. Synthesis of both enantiomers by use of the same chiral source and a choice of lanthanides. Scheme 8. Asymmetric 1,3-dipolar cycloaddition. Synthesis of both enantiomers by use of the same chiral source and a choice of lanthanides.
Demko, Z.P. Sharpless, K.B. A click chemistry approach to tetrazoles by huisgen 1,3-dipolar cycloaddition Synthesis of 5-sulfonyl tetrazoles from azides and sulfonyl cyanides. Angew. Chem. Int. Ed. 2002,... [Pg.1302]

Scheme 5 Vidal 1,3-Dipolar Cycloaddition Synthesis of Indoloquinazolines... Scheme 5 Vidal 1,3-Dipolar Cycloaddition Synthesis of Indoloquinazolines...
Other approaches to (36) make use of (37, R = CH ) and reaction with a tributylstannyl allene (60) or 3-siloxypentadiene (61). A chemicoen2ymatic synthesis for both thienamycia (2) and 1 -methyl analogues starts from the chiral monoester (38), derived by enzymatic hydrolysis of the dimethyl ester, and proceeding by way of the P-lactam (39, R = H or CH ) (62,63). (3)-Methyl-3-hydroxy-2-methylpropanoate [80657-57-4] (40), C H qO, has also been used as starting material for (36) (64), whereas 1,3-dipolar cycloaddition of a chiral nitrone with a crotonate ester affords the oxa2ohdine (41) which again can be converted to a suitable P-lactam precursor (65). [Pg.8]

In this section, reactivity studies will be emphasized while in those devoted to synthesis (Section 4.04.3) theoretical calculations on reactions leading to the formation of pyrazoles (mainly 1,3-dipolar cycloadditions) will be discussed. It should be emphasized that the theoretical treatment of reactivity is a very complicated problem and for this reason, most of the calculations have been carried out on aromatic compounds, as they are the easiest to handle. In general, solvents are not taken into account thus, at the best, the situation described theoretically corresponds to reactions taking place in the gas phase. [Pg.171]

The synthesis of pyrazoles, indazoles and their derivatives generally follows classical methods, the two most important methods for practical purposes being the reaction between hydrazines and /3-difunctional compounds, and 1,3-dipolar cycloadditions (Section 4.04.3.1.2). Both procedures are well documented (64HC(20)l, 66AHC(6)327, 67HC(22)l) and thus the length of the sections in this part of the chapter reflects not only the number of publications dealing with a particular method but also its interest and novelty. [Pg.273]

In these types of 1,3-dipolar cycloaddition only one of two possible isomers is obtained and the pyrazole functions have different orientations by the two methods. Another classical synthesis of pyrazoles (Section 4.04.3.2.l(ii)), the reaction between hydrazines and )3-diketones, has been used with success to prepare high molecular weight polypyrazoles (Scheme 65) (81MI40400). A-Arylation (Section 4.04.2.1.3(ix)) of 4,4 -dipyrazolyl with 1,4-diiodobenzene also yields polymeric pyrazoles (69RRC1263). [Pg.300]

Oxazolium hydroxide, anhydro-5-hydroxy-aromaticity, 6, 184 cycloaddition reactions, 6, 209 dimerization, 6, 207 1,3-dipolar cycloaddition reactions with alkynes, 6, 210 electrophilic reactions, 6, 207 mesoionic reactions, 6, 188 reactions, 6, 206-211 synthesis, 6, 225-227... [Pg.729]

Dipolar cycloaddUions. Interest in 1,3-dipolar cycloadditions increased dramatically during the past 20 years, largely because of the pioneering studies of Huisgen [7, 2] The versatility of this class of pericychc reactions in the synthesis of five-membered-ring heterocyclic compounds is comparable with that of the Diels-Alder reaction in the synthesis of six-membered-ring carbocyclic systems (equation 1)... [Pg.797]

Another triflate ester that recently has found growing application in organic synthesis is commercially available trimethylsilylmethyl trifluoromethanesul fonate. This powerful alkylating reagent can be used for the synthesis of various methylides by an alkylation-desilylation sequence A representative example is the generation and subsequent trapping by 1,3-dipolar cycloaddition of indolium methanides from the corresponding indole derivatives and trimethylsilylmethyl trifluoromethanesulfonate [108] (equation 54)... [Pg.962]

Dipolar cycloaddition in the synthesis of fullerene Ceo derivatives containing heterocyclic fragments 98KGS291. [Pg.252]

Whereas there are numerous examples of the application of the products from diastereoselective 1,3-dipolar cycloaddition reaction in synthesis [7, 8], there are only very few examples on the application of the products from metal-catalyzed asymmetric 1,3-dipolar cycloaddition reaction in the synthesis of potential target molecules. The reason for this may be due to the fact that most metal-catalyzed asymmetric 1,3-dipolar cycloaddition reaction have been carried out on model systems that have not been optimized for further derivatization. One exception of this is the synthesis of a / -lactam by Kobayashi and Kawamura [84]. The isoxazoli-dine endo-21h, which was obtained in 96% ee from the Yb(OTf)3-BINOL-catalyzed... [Pg.239]

The development of metal-catalyzed asymmetric 1,3-dipolar cycloaddition reactions is probably going to continue during the next decade. High level of control of the reactions of nitrones has been obtained, and for these reactions one of the next challenges is to explore new substrates that are designed for application in synthesis. The development of metal-catalyzed asymmetric reactions of the other... [Pg.245]

The importance of the 1,3-dipolar cycloaddition reaction for the synthesis of five-membered heterocycles arises from the many possible dipole/dipolarophile combinations. Five-membered heterocycles are often found as structural subunits of natural products. Furthermore an intramolecular variant makes possible the formation of more complex structures from relatively simple starting materials. For example the tricyclic compound 10 is formed from 9 by an intramolecular cycloaddition in 80% yield ... [Pg.76]

The class of 1,3-dipolar cycloadditions embraces a variety of reactions that can accomplish the synthesis of a diverse array of polyfunctional and stereochemically complex five-membered rings.3 The first report of a 1,3-dipolar cycloaddition of a nitrone (a 1,3-dipole) to phenyl isocyanate (a dipolarophile) came from Beckmann s laboratory in 1890,4 and a full 70 years elapsed before several investigators simultaneously reported examples of nitrone-olefin [3+2] cycloadditions.5 The pioneering and brilliant investigations of Huisgen and his coworkers6 have deepened our under-... [Pg.285]

Schemes 16-19 present the details of the enantioselective synthesis of key intermediate 9. The retrosynthetic analysis outlined in Scheme 5 identified aldoxime 32 as a potential synthetic intermediate the construction of this compound would mark the achievement of the first synthetic objective, for it would permit an evaluation of the crucial 1,3-dipolar cycloaddition reaction. As it turns out, an enantioselective synthesis of aldoxime 32 can be achieved in a straightforward manner by a route employing commercially available tetronic acid (36) and the MEM ether of allyl alcohol (74) as starting materials (see Scheme 16). Schemes 16-19 present the details of the enantioselective synthesis of key intermediate 9. The retrosynthetic analysis outlined in Scheme 5 identified aldoxime 32 as a potential synthetic intermediate the construction of this compound would mark the achievement of the first synthetic objective, for it would permit an evaluation of the crucial 1,3-dipolar cycloaddition reaction. As it turns out, an enantioselective synthesis of aldoxime 32 can be achieved in a straightforward manner by a route employing commercially available tetronic acid (36) and the MEM ether of allyl alcohol (74) as starting materials (see Scheme 16).
The intramolecular cycloaddition of a nitrile oxide (a 1,3-dipole) to an alkene is ideally suited for the regio- and stereocontrolled synthesis of fused polycyclic isoxazolines.16 The simultaneous creation of two new rings and the synthetic versatility of the isoxa-zoline substructure contribute significantly to the popularity of this cycloaddition process in organic synthesis. In spite of its high degree of functionalization, aldoxime 32 was regarded as a viable substrate for an intramolecular 1,3-dipolar cycloaddition reaction. Indeed, treatment of 32 (see Scheme 17) with sodium hypochlorite... [Pg.550]

The application of 1,3-dipolar cycloaddition processes to the synthesis of substituted tetrahydrofurans has been investigated, starting from epoxides and alkenes under microwave irradiation. The epoxide 85 was rapidly converted into carbonyl ylide 86 that behaved as a 1,3-dipole toward various alkenes, leading to quantitative yields of tetrahydrofuran derivatives 87 (Scheme 30). The reactions were performed in toluene within 40 min instead of 40 h under classical conditions, without significantly altering the selectivi-ties [64]. [Pg.230]

Another example of a microwave-assisted 1,3-dipolar cycloaddition using azomethine ylides and a dipolarophile was the intramolecular reaction reported for the synthesis of hexahydrochromeno[4,3-fo]pyrrolidine 105 [70]. It was the first example of a solvent-free microwave-assisted intramoleciflar 1,3-dipolar cycloaddition of azomethine ylides, obtained from aromatic aldehyde 102 and IM-substituted glycinate 103 (Scheme 36). The dipole was generated in situ (independently from the presence of a base like TEA) and reacted directly with the dipolarophile present within the same molecifle. The intramolecu-... [Pg.233]

A family of interesting polycychc systems 106 related to pyrrolidines was obtained in a one-pot double intermolecular 1,3-dipolar cycloaddition, irradiating derivatives of o-allyl-sahcylaldehydes with microwaves in toluene for 10 min in presence of the TEA salt of glycine esters [71]. A very similar approach was previously proposed by Bashiardes and co-workers to obtain a one-pot multicomponent synthesis of benzopyrano-pyrrolidines 107 and pyrrole products 108 (Scheme 37). The latter cycloadducts were obtained when o-propargylic benzaldehydes were utihzed instead of o-allyhc benzalde-hydes, followed by in situ oxidation [72]. [Pg.234]


See other pages where 1.3- dipolar cycloaddition synthesis is mentioned: [Pg.511]    [Pg.511]    [Pg.439]    [Pg.150]    [Pg.528]    [Pg.530]    [Pg.774]    [Pg.872]    [Pg.121]    [Pg.249]    [Pg.36]    [Pg.286]    [Pg.118]    [Pg.111]    [Pg.516]    [Pg.54]    [Pg.112]    [Pg.144]    [Pg.226]    [Pg.154]    [Pg.1150]    [Pg.1151]    [Pg.1]    [Pg.218]   
See also in sourсe #XX -- [ Pg.53 ]




SEARCH



1,3-dipolar cycloaddition triazoles synthesis

1.3- Dipolar cycloaddition Isoxazole synthesis

1.3- Dipolar cycloaddition Tetrazole synthesis

1.3- Dipolar cycloaddition amino acid synthesi

1.3- Dipolar cycloaddition, in synthesis

1.3- Dipolar cycloadditions natural synthesis

1.3- dipolar cycloaddition benzotriazole synthesis

1.3- dipolar cycloaddition indazole synthesis

Cycloalkanes synthesis via 1,3-dipolar cycloadditions

Heterocyclic synthesis azide 1,3-dipolar cycloadditions

Isoxazolidines synthesis via 1,3-dipolar cycloadditions

Isoxazolines synthesis via 1,3-dipolar cycloadditions

Lewis acids 1,3-dipolar cycloaddition synthesis

Synthesis cycloaddition

Synthesis of Nitrogen Heterocycles via Pd-Catalyzed 1,3-Dipolar Cycloaddition Reactions

© 2024 chempedia.info