Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heterocyclic synthesis azide 1,3-dipolar cycloadditions

Dipolar cycloaddition of azides with olefins provides a convenient access to triazolines, cyclic imines, and aziridines and hence is a valuable technique in heterocyclic synthesis. For instance, tricyclic -lactams 273 - 276 have been synthesized using the intramolecular azide-olefin cycloaddition (lAOC) methodology (Scheme 30) [71]. [Pg.39]

The 1,3-dipolar cycloaddition reactions to unsaturated carbon-carbon bonds have been known for quite some time and have become an important part of strategies for organic synthesis of many compounds (Smith and March, 2007). The 1,3-dipolar compounds that participate in this reaction include many of those that can be drawn having charged resonance hybrid structures, such as azides, diazoalkanes, nitriles, azomethine ylides, and aziridines, among others. The heterocyclic ring structures formed as the result of this reaction typically are triazoline, triazole, or pyrrolidine derivatives. In all cases, the product is a 5-membered heterocycle that contains components of both reactants and occurs with a reduction in the total bond unsaturation. In addition, this type of cycloaddition reaction can be done using carbon-carbon double bonds or triple bonds (alkynes). [Pg.680]

Since the discovery of triazole formation from phenyl azide and dimethyl acetylenedicarboxylate in 1893, synthetic applications of azides as 1,3-dipoles for the construction of heterocychc frameworks and core structures of natural products have progressed steadily. As the 1,3-dipolar cycloaddition of azides was comprehensively reviewed in the 1984 edition of this book (2), in this chapter we recount developments of 1,3-dipolar cycloaddition reactions of azides from 1984 to 2000, with an emphasis on the synthesis of not only heterocycles but also complex natural products, intermediates, and analogues. [Pg.623]

The synthesis of the heterocyclic dendrimer 181 was based on the intermolecular 1,3-dipolar cycloaddition of the azide 180 with acetylenedicarboxylic acid and its esters (39) (Scheme 9.39). [Pg.644]

The 1,3-dipolar cycloaddition of azides combined with further synthetic transformations is a highly useful reaction for the synthesis of heterocycles and natural products. Even though the chemistry of azide cycloadditions has been known for... [Pg.676]


See other pages where Heterocyclic synthesis azide 1,3-dipolar cycloadditions is mentioned: [Pg.1150]    [Pg.623]    [Pg.624]    [Pg.625]    [Pg.627]    [Pg.629]    [Pg.631]    [Pg.633]    [Pg.635]    [Pg.637]    [Pg.639]    [Pg.641]    [Pg.643]    [Pg.645]    [Pg.647]    [Pg.836]    [Pg.462]    [Pg.463]    [Pg.464]    [Pg.466]    [Pg.468]    [Pg.470]    [Pg.472]    [Pg.474]    [Pg.476]   


SEARCH



1.3- dipolar cycloaddition synthesis

Azides 1,3-dipolar cycloadditions

Azides cycloaddition

Azides cycloadditions

Azides heterocyclic synthesis

Azides synthesis

Cycloaddition heterocyclization

Heterocycles 3+2] cycloadditions

Heterocycles cycloaddition

Synthesis cycloaddition

© 2024 chempedia.info