Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

1.3- Dipolar cycloaddition Isoxazole synthesis

Scheme 11.4. 1,3-Dipolar cycloadditions for synthesis of pyrazolines 15 [4c] or isoxazoles 19 [47]. Scheme 11.4. 1,3-Dipolar cycloadditions for synthesis of pyrazolines 15 [4c] or isoxazoles 19 [47].
As discussed in Section 6.2, nitro compounds are good precursors of nitrile oxides, which are important dipoles in cycloadditions. The 1,3-dipolar cycloaddition of nitrile oxides with alkenes or alkynes provides a straightforward access to 2-isoxazolines or isoxazoles, respectively. A number of ring-cleaving procedures are applicable, such that various types of compounds may be obtained from the primary adducts (Scheme 8.18). There are many reports on synthetic applications of this reaction. The methods for generation of nitrile oxides and their reactions are discussed in Section 6.2. Recent synthetic applications and asymmetric synthesis using 1,3-dipolar cycloaddition of nitrile oxides are summarized in this section. [Pg.258]

Macrocycles containing isoxazoline or isoxazole ring systems, potential receptors in host—guest chemistry, have been prepared by multiple (double, triple or quadruple) 1,3-dipolar cycloadditions of nitrile oxides, (prepared in situ from hydroxamoyl chlorides) to bifunctional calixarenes, ethylene glycols, or silanes containing unsaturated ester or alkene moieties (453). This one-pot synthetic method has been readily extended to the preparation of different types of macrocycles such as cyclophanes, bis-calix[4]arenes and sila-macrocycles. The ring size of macrocycles can be controlled by appropriate choices of the nitrile oxide precursors and the bifunctional dipolarophiles. Multiple cycloadditive macrocy-clization is a potentially useful method for the synthesis of macrocycles. [Pg.90]

The synthesis of multivalent neoglycoconjugates by 1,3-dipolar cycloaddition of nitrile oxides and alkynes has been reported (493). The nitrile oxides have been generated in situ in the presence of alkynyl derivatives, allowing the access to homo and hetero multivalent systems containig O- and C-linked glycosides and isoxazole bridges. [Pg.100]

Isoxazolines are partially unsaturated isoxazoles. In most cases these compounds are precursors to the isoxazoles, and as a result, the synthesis can also be found in Sect. 3.2.1b. Kaffy et al., used a 1,3-dipolar cycloaddition of a nitrile oxide (186) with the respective styrene (201a or b) to generate isoxazolines (202a or b, respectively). Depending on the substitution of the vinyl portion of the styrene molecule, either 3- or 4-substituted isoxazolines could be formed (Scheme 55) [94], Simoni et al. employed similar chemistry to produce isoxazolines [60]. Kidwai and Misra emplyed microwave technology to treat chalcones with hydroxylamine and basic alumina [99]. The isoxazoles synthesized by Simoni et al. possess anti-proliferative and apoptotic activity in the micromolar range [60]. [Pg.61]

The first demonstration of fluorous synthesis was in the preparation of small (8-12 members) isoxazo-line and isoxazole libraries by the three-step procedure outlined in Figure 8.1461 All reactions were purified by three-phase liquid-liquid extraction. The starting substrates were simple allylic alcohols which were tagged with the fluorous silyl halide 5 to make substrates 6 for an ensuing dipolar cycloaddition. This was conducted by the Mukaiyama method with a large excess of nitro compound and... [Pg.32]

The general method, that has been widely used for the synthesis of perhydropyrrolo[1,2-6]isoxazoles, is based on a cycloaddition reaction of cyclic nitrones with dipolarophiles. The nitrone is easily available by oxidation of the corresponding hydroxylamine with mercuric chloride. The cycloaddition of nitrone to dipolarophiles is highly regioselective and stereoselective and have been often applied in the total synthesis of natural products <20010L1367, 2004BML3967, 2005JOC3157>. As one representative example of dipolar cycloaddition, reaction... [Pg.67]

Fluoride ion catalyzed 1,3-dipolar cycloaddition of bromo nitrile oxide, obtained in situ from dibromoformaldehyde oxime 184, to nonactivated alkynes provides a new approach to the synthesis of neuroactive isoxazoles. However, the regioselectivity of cycloaddition in this case is not high—products 185 and 186 are obtained in a 1 1 to 1 1.4 ratio (equation 80). Cycloaddition reaction of hydroximoyl chlorides and acetylene was snc-cessfully carried out also in the presence of NaHCOs as a base. For instance, a-keto oximes 187 were reacted with acetylene and NaHCOs to give isoxazoles 188 in good yields (equation 81). [Pg.259]

As part of an extensive study of the 1,3-dipolar cycloadditions of cyclic nitrones, Ali et al. (392-397) found that the reaction of the 1,4-oxazine 349 with various dipolarophiles afforded the expected isoxazolidinyloxazine adducts (Scheme 1.78) (398). In line with earlier results (399,400), oxidation of styrene-derived adduct 350 with m-CPBA facilitated N—O cleavage and further oxidation as above to afford a mixture of three compounds, an inseparable mixture of ketonitrone 351 and bicyclic hydroxylamine 352, along with aldonitrone 353 with a solvent-dependent ratio (401). These workers have prepared the analogous nitrones based on the 1,3-oxazine ring by oxidative cleavage of isoxazolidines to afford the hydroxylamine followed by a second oxidation with benzoquinone or Hg(ll) oxide (402-404). These dipoles, along with a more recently reported pyrazine nitrone (405), were aU used in successful cycloaddition reactions with alkenes. Elsewhere, the synthesis and cycloaddition reactions of related pyrazine-3-one nitrone 354 (406,407) or a benzoxazine-3-one dipolarophile 355 (408) have been reported. These workers have also reported the use of isoxazoles with an exocychc alkene in the preparation of spiro[isoxazolidine-5,4 -isoxazolines] (409). [Pg.61]

It is a major challenge to keep our coverage of this immense field up to date. One strategy is to publish Supplements or new Parts when merited by the amount of new material, as has been done, inter alia, with pyridines, purines, pyrimidines, quinazolines, isoxazoles, pyridazines and pyrazines. The chemistry and applications to synthesis of 1,3-dipolar cycloaddition reactions in the broad context of organic chemistry were first covered in a widely cited two-volume treatise edited by Prof. Albert Padwa that appeared in 1984. Since so much has been published on this fascinating and broadly useful subject in the intervening years, we felt that a Supplement would be welcomed by the international chemistry community, and we... [Pg.946]

Perhydropyrrolo[l,2-fc]isoxazoles result from 1,3-dipolar cycloaddition of cyclic nitrones with alkenes. The high regio- and stereoselectivity of this cycloaddition has been used to control the stereochemistry in the synthesis of natural products. As one example, pyrroline N-oxide (70) and 3,4-dimethoxystyrene gave a diastereomeric mixture of pyrroloisoxazoles (71) and (72), in nearly quantitative yield with preferential formation of (71). [Pg.674]

The two main routes for the synthesis of isoxazoles are the attack of hydroxylamine (NH2OH) on diketones and 1,3-dipolar cycloadditions of nitrile oxides. They thus form a link between the strategy... [Pg.1200]

The importance of 1,3-dipolar cycloadditions (1,3-DC) in the realm of heterocyclic synthesis is widely documented and recent results concerning the intramolecular version of this methodology, including reactions with nitrile oxides and nitrones for access to isoxazole derivatives, have been reviewed <07T12247>. A quantum chemical study of the Lewis acid effect on the cycloaddition of benzonitrile oxide to propyne has been reported evidencing a small influence on the outcome of the reaction <07T5251>. [Pg.265]

Sequential [3+2] cycloaddition/silicon-based cross-coupling reactions allowed for the synthesis of 3,4,5-trisubsti-tuted isoxazoles. Regioselective 1,3-dipolar cycloaddition reactions between alkynyldimethylsilyl ethers 400 and ethyl or phenyl nitrile oxides, generated in situ from 1-nitropropane and A -hydroxybenzene carboximidoyl chloride, respectively, gave as predominant products after hydrolysis isoxazol-4-ylsilanols 401, converted into 4-arylisoxazoles 402 by cross-coupling with a variety of aryl iodides (Scheme 97) <2005JOC2839>. [Pg.432]

The solution-phase synthesis and resolution of new phosphinopeptidic building blocks containing a triple bond and their involvement in 1,3-dipolar cycloaddition with a variety of in j// -prepared nitrile oxides allowed the diastereoselective preparation of a novel class of isoxazole-containing phosphinic peptides 619. Inhibition assays of some of these peptides revealed their behavior as very potent inhibitors of metalloproteases, outmatching previously reported phosphinic peptides in terms of potency <2003CEJ2079>. [Pg.470]

In a search for new isoxazole-based liquid crystalline compounds, a 22-member library of 3,5-diaryl isoxazoles 628 was prepared by parallel synthesis on solid phase (Rink resin) through 1,3-dipolar cycloaddition of supported phenylacetylene units with suitable aryl nitrile oxides generated in situ from hydroxyiminoyl chlorides. Cleavage from the resin under acidic conditions allowed the generation of the cyano moiety <2004TL2277>. [Pg.472]

With isoxazole derivatives, carbene reactions are of virtually no synthetic value. The only exception affords A -isoxazoline N-oxide 533 in moderate yields by thermal decomposition of the silver salt of aryldinitromethanes in the presence of electron-rich alkenes. This synthesis involves 1,3-dipolar cycloaddition of the intermediate arylnitrocarbenes to the olefins (80JOC4158). [Pg.179]

Theoretical studies are also done to interpret the synthesis reactions and mechanism of reactions. The regioselectivity of 1,3-dipolar cycloaddition reaction between substituted trimethylstannyl-ethynes and nitrile oxides yielding isoxazoles, was interpreted by the application of frontier electron theory <93CPB478>. By the combination of experimental and molecular orbital (ab initio) studies, a multistep mechanism is proposed for unimolecular radical chemistry of isoxazoles in the gas phase <920MS(27)317>. [Pg.225]


See other pages where 1.3- Dipolar cycloaddition Isoxazole synthesis is mentioned: [Pg.144]    [Pg.20]    [Pg.46]    [Pg.65]    [Pg.66]    [Pg.86]    [Pg.106]    [Pg.103]    [Pg.107]    [Pg.268]    [Pg.456]    [Pg.135]    [Pg.515]    [Pg.261]    [Pg.1022]    [Pg.171]    [Pg.429]    [Pg.284]    [Pg.456]    [Pg.430]    [Pg.431]    [Pg.431]    [Pg.433]    [Pg.434]    [Pg.435]    [Pg.463]    [Pg.144]    [Pg.256]   
See also in sourсe #XX -- [ Pg.841 , Pg.842 ]




SEARCH



1.3- dipolar cycloaddition synthesis

Isoxazole synthesis

Isoxazoles synthesis

Synthesis cycloaddition

© 2024 chempedia.info