Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

2,3-Dimethyl- -nitril

Butensaure 2,3-Dimethyl- -nitril E18, 807 (Dien + Ni-CN) Cyclopentan Cyan- E5, 1450f. [Pg.286]

Hexan-6-al-l-saure 5,5-Dimethyl- -nitril E19a, 828 (Cyclopropan/ HgX2 + En)... [Pg.519]

Fats, Oils, or Fatty Acids. The primary products produced direcdy from fats, oils, or fatty acids without a nitrile iatermediate are the quatemized amidoamines, imidazolines, and ethoxylated derivatives (Fig. 3). Reaction of fatty acids or tallow with various polyamines produces the iatermediate dialkylarnidoarnine. By controlling reaction conditions, dehydration can be continued until the imidazoline is produced. Quaternaries are produced from both amidoamines and imidazolines by reaction with methyl chloride or dimethyl sulfate. The amidoamines can also react with ethylene oxide (qv) to produce ethoxylated amidoamines which are then quaternized. [Pg.381]

Citral readily forms acetals by acid-catalyzed addition of alcohols or by the use of trialkoxyorthoformates. Citral dimethyl acetal [7549-37-3] is stable under alkaline conditions, whereas citral is not. Neryl and geranyl nitriles can be made by oximation of citral and dehydration of the intermediate oxime. For instance, geranonitrile [31983-27-4] is made as follows ... [Pg.424]

The thermal or photolytic fragmentation of furazans to nitriles and nitrile Af-oxides has been reported (73JOC1054, 75JOC2880). The irradiation of dimethylfurazan (419) in the presence of cyclopentene, and benzofurazan (420) in the presence of dimethyl acety-lenedicarboxylate, gave isoxazoline (421) and isoxazole (422), respectively, in good yields. The thermolysis of acenaphtho[l,2-c]furazan (423) in the presence of phenylacetylene gave isoxazole (424) in 55% yield. [Pg.81]

Alkynic esters react with nitrile oxides in a pH dependent reaction to product isoxazolin-5-ones (Scheme 145) (71JCS(C)86). Alkynic ethers also react with benzonitrile oxide to produce an isoxazole-ether which on treatment with HCl or HBr gave an isoxazolinone (Scheme 145) (63CB1088,58MI41600). The reaction of benzonitrile oxide with dimethoxyketene yielded a dimethyl acetal which was split with acid into the isoxazolinone (Scheme 145) (59G15H). [Pg.104]

Nitrile ylides derived from the photolysis of 1-azirines have also been found to undergo a novel intramolecular 1,1-cycloaddition reaction (75JA3862). Irradiation of (65) gave a 1 1 mixture of azabicyclohexenes (67) and (68). On further irradiation (67) was quantitatively isomerized to (68). Photolysis of (65) in the presence of excess dimethyl acetylenedicar-boxylate resulted in the 1,3-dipolar trapping of the normal nitrile ylide. Under these conditions, the formation of azabicyclohexenes (67) and (68) was entirely suppressed. The photoreaction of the closely related methyl-substituted azirine (65b) gave azabicyclohexene (68b) as the primary photoproduct. The formation of the thermodynamically less favored endo isomer, i.e. (68b), corresponds to a complete inversion of stereochemistry about the TT-system in the cycloaddition process. [Pg.58]

Comparison of Table 5.4 and 5.7 allows the prediction that aromatic oils will be plasticisers for natural rubber, that dibutyl phthalate will plasticise poly(methyl methacrylate), that tritolyl phosphate will plasticise nitrile rubbers, that dibenzyl ether will plasticise poly(vinylidene chloride) and that dimethyl phthalate will plasticise cellulose diacetate. These predictions are found to be correct. What is not predictable is that camphor should be an effective plasticiser for cellulose nitrate. It would seem that this crystalline material, which has to be dispersed into the polymer with the aid of liquids such as ethyl alcohol, is only compatible with the polymer because of some specific interaction between the carbonyl group present in the camphor with some group in the cellulose nitrate. [Pg.88]

In a manner analogous to classic nitrile iinines, the additions of trifluoro-methylacetonitrile phenylimine occur regiospecifically with activated terminal alkenes but less selectively with alkynes [39], The nitnle imine reacts with both dimethyl fumarate and dimethyl maleate m moderate yields to give exclusively the trans product, presumably via epimenzation of the labile H at position 4 [40] (equation 42) The nitrile imine exhibits exo selectivities in its reactions with norbornene and norbornadiene, which are similar to those seen for the nitrile oxide [37], and even greater reactivity with enolates than that of the nitnle oxide [38, 41], Reactions of trifluoroacetomtrile phenyl imine with isocyanates, isothiocyanates, and carbodiimides are also reported [42]... [Pg.811]

A novel pyrolytic method of generating nitrile ylides in situ was reported by Burger [44] (equation 45) Such nitrile ylides react with various dipolarophiles alkynes [44] (equation 46), nitriles [45] (equation 47), dimethyl azodicarboxylate [45], aldehydes [45], and nitroso compounds [46]... [Pg.812]

The influence of other groups in a pyridine or similar ring system is more difficult to assess because no kinetic data are available. The deactivating effect of the bromine atom in the 2-position is greater than that in the 3-position, while 2,6-dibromopyridine is very slow to react with dimethyl sulfate. Esters, amides, and nitriles of nicotinic and isonicotinic acids undergo fairly easy quaternization at about... [Pg.12]


See other pages where 2,3-Dimethyl- -nitril is mentioned: [Pg.914]    [Pg.919]    [Pg.219]    [Pg.304]    [Pg.395]    [Pg.411]    [Pg.668]    [Pg.668]    [Pg.782]    [Pg.801]    [Pg.918]    [Pg.918]    [Pg.1057]    [Pg.1190]    [Pg.754]    [Pg.305]    [Pg.217]    [Pg.70]    [Pg.383]    [Pg.111]    [Pg.313]    [Pg.314]    [Pg.104]    [Pg.135]    [Pg.150]    [Pg.87]    [Pg.171]    [Pg.88]    [Pg.155]    [Pg.604]    [Pg.54]    [Pg.228]    [Pg.63]    [Pg.75]    [Pg.80]    [Pg.226]   
See also in sourсe #XX -- [ Pg.383 ]




SEARCH



2.3- Dimethyl-2- -3-nitro -nitril

2.3- Dimethyl-2- -propansaure-nitril

Nitriles dimethyl diazomalonate

Nitriles, dimethyl carbonate reactions

© 2024 chempedia.info