Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dienes alkylation

For some organic compounds, such as phenols, aromatic amines, electron-rich olefins and dienes, alkyl sulfides, and eneamines, chemical oxidation is an important degradation process under environmental conditions. Most of these reactions depend on reactions with free-radicals already in solution and are usually modeled by pseudo-first-order kinetics ... [Pg.49]

The intramolecular coupKng of enolethers with enolethers, styrenes, dienes, alkyl-substituted olefins, allylshanes, and vinylshanes was systematically studied by Moeller [90,198-200]. These couplings allow the smooth formation of quaternary carbon atoms in fused bicycKc rings having a cis stereochemistry (Fig. 43) [201, 202]. [Pg.423]

Fig. 12 Nickel-catalyzed three-component coupling of 1,3-dienes, alkyl halides and organome-tallic reagents... Fig. 12 Nickel-catalyzed three-component coupling of 1,3-dienes, alkyl halides and organome-tallic reagents...
The polydispersity increases with reaction time. At temperatures higher than 60 °C, the polydispersity and the molecular weight of products obtained by buradiene polymerization in dioxane16) strongly depend on temperature. The optimum characteristics (best yield, lowest polydispersity) are obtained between 50° and 60 °C. The polymerization of dienes, alkyl acrylates and styrene in the presence of 4,4 -azobis-(4-cyano-n-pentanol) has also been described 22 25). [Pg.170]

B. Functional Groups — Preparation, reactions, and interconversions of alkanes, alkenes, alkynes, dienes, alkyl halides, alcohols, ethers, epoxides, sulfides, thiols, aromatic compounds, aldehydes, ketones, carboxylic acids and their derivatives, amines... [Pg.5]

The potential of dihydro-oxazines is displayed to advantage in a high-yield synthesis of the male bollworm moth pheromone, tra/w-l-acetoxy-10-n-propyltrideca-5,9-diene. Alkylation of anions from dihydro-oxazines with a,o)-dihalogenoalkanes and subsequent elaboration of the terminal halide provides a route to variously functionalized aldehydes (Scheme 63). [Pg.126]

Cis-olefins or cis./rjns-dienes can be obtained from alkynes in similar reaction sequences. The alkyne is first hydroborated and then treated with alkaline iodine. If the other substituents on boron are alkyl groups, a cis-olefin is formed (G. Zweifel, 1967). If they are cir-alkenyls, a cis, trans-diene results. The reactions are thought to be iodine-assisted migrations of the cis-alkenyl group followed by (rans-deiodoboronation (G. Zweifel, 1968). Trans, trans-dienes are made from haloalkynes and alkynes. These compounds are added one after the other to thexylborane. The alkenyl(l-haloalkenyl)thexylboranes are converted with sodium methoxide into trans, trans-dienes (E. Negishi, 1973). The thexyl group does not migrate. [Pg.37]

Migration of a hydride ligand from Pd to a coordinated alkene (insertion of alkene) to form an alkyl ligand (alkylpalladium complex) (12) is a typical example of the a, /(-insertion of alkenes. In addition, many other un.saturated bonds such as in conjugated dienes, alkynes, CO2, and carbonyl groups, undergo the q, /(-insertion to Pd-X cr-bonds. The insertion of an internal alkyne to the Pd—C bond to form 13 can be understood as the c -carbopa-lladation of the alkyne. The insertion of butadiene into a Ph—Pd bond leads to the rr-allylpalladium complex 14. The insertion is usually highly stereospecific. [Pg.7]

In Grignard reactions, Mg(0) metal reacts with organic halides of. sp carbons (alkyl halides) more easily than halides of sp carbons (aryl and alkenyl halides). On the other hand. Pd(0) complexes react more easily with halides of carbons. In other words, alkenyl and aryl halides undergo facile oxidative additions to Pd(0) to form complexes 1 which have a Pd—C tr-bond as an initial step. Then mainly two transformations of these intermediate complexes are possible insertion and transmetallation. Unsaturated compounds such as alkenes. conjugated dienes, alkynes, and CO insert into the Pd—C bond. The final step of the reactions is reductive elimination or elimination of /J-hydro-gen. At the same time, the Pd(0) catalytic species is regenerated to start a new catalytic cycle. The transmetallation takes place with organometallic compounds of Li, Mg, Zn, B, Al, Sn, Si, Hg, etc., and the reaction terminates by reductive elimination. [Pg.125]

Laboratory syntheses of conjugated dienes can be achieved by elimination reactions of unsaturated alcohols and alkyl halides In the two examples that follow the conjugated diene is produced m high yield even though an isolated diene is also possible... [Pg.404]

Dienes with isolated double bonds can be formed when the structure of the alkyl halide doesn t permit the formation of a conjugated diene... [Pg.404]

Dienes can also be used ia Friedel-Crafts cyclo alkylations. For example, treatment of phenol with 2,5-dimethyl-2,4 hexadiene gives 5,5,8,8-tetramethyl,6,7-dihydro-2-naphthol. [Pg.555]

The addition proceeds in three discrete steps and the intermediates can be isolated. Simple alkenes are less reactive than alkynes and do not undergo the addition to aHylic boranes, but electron-rich alkyl vinyl ethers react at moderate temperatures to give 1,4-dienes or dienyl alcohols (440). [Pg.321]

Vinylboranes are interesting dienophiles in the Diels-Alder reaction. Alkenylboronic esters show moderate reactivity and give mixtures of exo and endo adducts with cyclopentadiene and 1,3-cyclohexadiene (441). Dichloroalkenylboranes are more reactive and dialkylalkenylboranes react even at room temperature (442—444). Dialkylalkenylboranes are omniphilic dienophiles insensitive to diene substitution (444). In situ formation of vinyl-boranes by transmetaHation of bromodialkylboranes with vinyl tri alkyl tin compounds makes possible a one-pot reaction, avoiding isolation of the intermediate vinylboranes (443). Other cycloadditions of alkenyl- and alkynylboranes are known (445). [Pg.321]

Anionic polymerization of vinyl monomers can be effected with a variety of organometaUic compounds alkyllithium compounds are the most useful class (1,33—35). A variety of simple alkyllithium compounds are available commercially. Most simple alkyllithium compounds are soluble in hydrocarbon solvents such as hexane and cyclohexane and they can be prepared by reaction of the corresponding alkyl chlorides with lithium metal. Methyllithium [917-54-4] and phenyllithium [591-51-5] are available in diethyl ether and cyclohexane—ether solutions, respectively, because they are not soluble in hydrocarbon solvents vinyllithium [917-57-7] and allyllithium [3052-45-7] are also insoluble in hydrocarbon solutions and can only be prepared in ether solutions (38,39). Hydrocarbon-soluble alkyllithium initiators are used directiy to initiate polymerization of styrene and diene monomers quantitatively one unique aspect of hthium-based initiators in hydrocarbon solution is that elastomeric polydienes with high 1,4-microstmcture are obtained (1,24,33—37). Certain alkyllithium compounds can be purified by recrystallization (ethyllithium), sublimation (ethyllithium, /-butyUithium [594-19-4] isopropyllithium [2417-93-8] or distillation (j -butyUithium) (40,41). Unfortunately, / -butyUithium is noncrystaUine and too high boiling to be purified by distiUation (38). Since methyllithium and phenyllithium are crystalline soUds which are insoluble in hydrocarbon solution, they can be precipitated into these solutions and then redissolved in appropriate polar solvents (42,43). OrganometaUic compounds of other alkaU metals are insoluble in hydrocarbon solution and possess negligible vapor pressures as expected for salt-like compounds. [Pg.238]

AlkyUithium compounds are primarily used as initiators for polymerizations of styrenes and dienes (52). These initiators are too reactive for alkyl methacrylates and vinylpyridines. / -ButyUithium [109-72-8] is used commercially to initiate anionic homopolymerization and copolymerization of butadiene, isoprene, and styrene with linear and branched stmctures. Because of the high degree of association (hexameric), -butyIUthium-initiated polymerizations are often effected at elevated temperatures (>50° C) to increase the rate of initiation relative to propagation and thus to obtain polymers with narrower molecular weight distributions (53). Hydrocarbon solutions of this initiator are quite stable at room temperature for extended periods of time the rate of decomposition per month is 0.06% at 20°C (39). [Pg.239]

When using a cation source in conjunction with a Friedel-Crafts acid the concentration of growing centers is most often difficult to measure and remains unknown. By the use of stable carbocation salts (for instance trityl and tropyhum hexachloroantimonate) the uncertainty of the concentration of initiating cations is eliminated. Due to the highly reproducible rates, stable carbocation salts have been used in kinetic studies. Their use, however, is limited to cationicaHy fairly reactive monomers (eg, A/-vinylcarbazole, -methoxystyrene, alkyl vinyl ethers) since they are too stable and therefore ineffective initiators of less reactive monomers, such as isobutylene, styrene, and dienes. [Pg.245]

Uses. Magnesium alkyls are used as polymerization catalysts for alpha-alkenes and dienes, such as the polymerization of ethylene (qv), and in combination with aluminum alkyls and the transition-metal haUdes (16—18). Magnesium alkyls have been used in conjunction with other compounds in the polymerization of alkene oxides, alkene sulfides, acrylonitrile (qv), and polar vinyl monomers (19—22). Magnesium alkyls can be used as a Hquid detergents (23). Also, magnesium alkyls have been used as fuel additives and for the suppression of soot in combustion of residual furnace oil (24). [Pg.340]

Endo adducts are usually favored by iateractions between the double bonds of the diene and the carbonyl groups of the dienophile. As was mentioned ia the section on alkylation, the reaction of pyrrole compounds and maleic anhydride results ia a substitution at the 2-position of the pyrrole ring (34,44). Thiophene [110-02-1] forms a cycloaddition adduct with maleic anhydride but only under severe pressures and around 100°C (45). Addition of electron-withdrawiag substituents about the double bond of maleic anhydride increases rates of cycloaddition. Both a-(carbomethoxy)maleic anhydride [69327-00-0] and a-(phenylsulfonyl) maleic anhydride [120789-76-6] react with 1,3-dienes, styrenes, and vinyl ethers much faster than tetracyanoethylene [670-54-2] (46). [Pg.450]

Such copolymers of oxygen have been prepared from styrene, a-methylstyrene, indene, ketenes, butadiene, isoprene, l,l-diphen5iethylene, methyl methacrjiate, methyl acrylate, acrylonitrile, and vinyl chloride (44,66,109). 1,3-Dienes, such as butadiene, yield randomly distributed 1,2- and 1,4-copolymers. Oxygen pressure and olefin stmcture are important factors in these reactions for example, other products, eg, carbonyl compounds, epoxides, etc, can form at low oxygen pressures. Polymers possessing dialkyl peroxide moieties in the polymer backbone have also been prepared by base-catalyzed condensations of di(hydroxy-/ f2 -alkyl) peroxides with dibasic acid chlorides or bis(chloroformates) (110). [Pg.110]

Improved feedstock pretreatment is important to minimize catalyst consumption and reduce subsequent spent-catalyst handling requirements. Selective hydrogenation of dienes can be used to reduce acid consumption, both in HF and H2SO4 alkylation (29). More effective adsorptive treating systems have been appHed to remove oxygen-containing contaminants that are frequently introduced in upstream processing steps. [Pg.47]


See other pages where Dienes alkylation is mentioned: [Pg.949]    [Pg.581]    [Pg.153]    [Pg.133]    [Pg.949]    [Pg.251]    [Pg.949]    [Pg.153]    [Pg.1071]    [Pg.151]    [Pg.94]    [Pg.93]    [Pg.949]    [Pg.581]    [Pg.153]    [Pg.133]    [Pg.949]    [Pg.251]    [Pg.949]    [Pg.153]    [Pg.1071]    [Pg.151]    [Pg.94]    [Pg.93]    [Pg.15]    [Pg.183]    [Pg.39]    [Pg.215]    [Pg.227]    [Pg.315]    [Pg.238]    [Pg.240]    [Pg.441]    [Pg.103]    [Pg.181]    [Pg.182]   


SEARCH



1.5- Dienes phosphonium ylide alkylation

Alkyl derivatives dienes

Alkyl halides acids + dienes

Alkyl halides dienes

Alkyl halides halogens + dienes

Alkyl-diene complex

Diene coupling alkyl-substitution

Dienes arene alkylation

Dienes intramolecular alkyl-substituted diene

Photoreaction of tropolone alkyl ether, cycloocta-2,4-dien-l-one and pyridone

© 2024 chempedia.info