Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diene monomers Included

The investigation carried out on homopolymerization and copolymerization of diene monomers included in PHTP allowed us to make evident that the same stereochemical control exists for the two processes (], 24). In both cases 1,4-trans units only are produced, thus permitting a straightforward sequential analysis. The only difference concerns regioselectivity, which is somewhat lower in copolyraerization. For instance, poly(butadiene-co-pentadiene) contains 1 - 3% of head-to-head pentadiene-pentadiene dyads with adjacent tertiary carbons. [Pg.91]

The M[ZnR4] and M[A1R4]2 ate complexes (M = Ca, Sr, Ba) polymerize vinyl and conjugated diene monomers including styrene, methylmethacrylate, acrylonitrile, vinyl-ketones, isoprene and butadiene . The bimetallic complexes produce polymers of differing microstructure to that formed by simple alkaline-earth metal initiators, so that the presence of Zn or A1 influences the stereochemistry of propagation. Thus, polybutadiene obtained in benzene from a Ba-Zn initiator contains more than 90% 1,4-bonds (trans-1,4 75-81 %) ... [Pg.488]

TPEs from blends of rubber and plastics constitute an important category of TPEs. These can be prepared either by the melt mixing of plastics and rubbers in an internal mixer or by solvent casting from a suitable solvent. The commonly used plastics and rubbers include polypropylene (PP), polyethylene (PE), polystyrene (PS), nylon, ethylene propylene diene monomer rubber (EPDM), natural rubber (NR), butyl rubber, nitrile rubber, etc. TPEs from blends of rubbers and plastics have certain typical advantages over the other TPEs. In this case, the required properties can easily be achieved by the proper selection of rubbers and plastics and by the proper change in their ratios. The overall performance of the resultant TPEs can be improved by changing the phase structure and crystallinity of plastics and also by the proper incorporation of suitable fillers, crosslinkers, and interfacial agents. [Pg.634]

In one of the first reports on fiber reinforcement of rubber, natural rubber (NR) was used by Collier [9] as the rubber matrix, which was reinforced using short cotton fibers. Some of the most commonly used rubber matrices for fiber reinforcement are NR, ethylene-propylene-diene monomer (EPDM) rubber, styrene-butadiene rubber (SBR), polychloroprene rubber, and nitrile rubber [10-13]. These rubbers were reinforced using short and long fibers including jute, silk, and rayon [14—16]. [Pg.353]

The polymers prepared from thexylborane and diene monomers were reacted with carbon monoxide at 120°C, followed by treatment with NaOH and H202 to produce a polyalcohol (scheme 5).13 This conversion includes migration of the polymer chain and thexyl group from the boron atom to carbon, as shown in scheme 5. When this reaction was carried out under milder condition, poly(ketone) segments were included in the polymer backbone due to an incomplete migration of the thexyl group. [Pg.142]

Significant improvement in controlled polymerizations of a variety monomers, including styrene, acrylates, acrylamide, acrylonitrile, 1,3-dienes, and maleic anhydride has been achieved when alkoxyamines have been used as initiators for living, free radical polymerization.(696c, 697) Alkoxyamines can be easily synthesized in situ by the double addition of free radicals, generated by thermal decomposition of an azo-initiator, such as 2,2 -azo-h/.s-/.so-butyronitrile (AIBN), to nitrones (Scheme 2.206). [Pg.295]

Diene polymers refer to polymers synthesized from monomers that contain two carbon-carbon double bonds (i.e., diene monomers). Butadiene and isoprene are typical diene monomers (see Scheme 19.1). Butadiene monomers can link to each other in three ways to produce ds-1,4-polybutadiene, trans-l,4-polybutadi-ene and 1,2-polybutadiene, while isoprene monomers can link to each other in four ways. These dienes are the fundamental monomers which are used to synthesize most synthetic rubbers. Typical diene polymers include polyisoprene, polybutadiene and polychloroprene. Diene-based polymers usually refer to diene polymers as well as to those copolymers of which at least one monomer is a diene. They include various copolymers of diene monomers with other monomers, such as poly(butadiene-styrene) and nitrile butadiene rubbers. Except for natural polyisoprene, which is derived from the sap of the rubber tree, Hevea brasiliensis, all other diene-based polymers are prepared synthetically by polymerization methods. [Pg.547]

A variety of monomers, including styrene, acrylonitrile, (meth) acrylates, (meth) acrylamides, 1,3-dienes, and 4-vinylpyridine, undergo ATRP. ATRP involves a multicomponent system of initiator, an activator catalyst (a transition metal in its lower oxidation state), a deactivator (the transition state metal in its higher oxidation state) either formed spontaneously or deliberately added, ligands, and solvent. Successful ATRP of a specific monomer requires matching the various components so that the dormant species concentration exceeds the propagating radical concentration by a factor of 106. [Pg.319]

Traditional Ziegler-Natta and metallocene initiators polymerize a variety of monomers, including ethylene and a-olefins such as propene, 1-butene, 4-methyl-1-pentene, vinylcyclo-hexane, and styrene. 1,1-Disubstituted alkenes such as isobutylene are polymerized by some metallocene initiators, but the reaction proceeds by a cationic polymerization [Baird, 2000]. Polymerizations of styrene, 1,2-disubstituted alkenes, and alkynes are discussed in this section polymerization of 1,3-dienes is discussed in Sec. 8-10. The polymerization of polar monomers is discussed in Sec. 8-12. [Pg.682]

The NMR analysis (21) of the chemical composition for copolymers from various monomer feed ratios at fairly low conversion are shown in Table IV. The results were then used to estimate the reactivity ratios for the diene monomers under the conditions employed. Various published methods of calculating monomer reactivity ratios have been examined. These include the once popular but now somewhat out of favor Fineman-Ross method... [Pg.550]

In this section the occurrence of LCB in several other of the more important polymers during free-radical polymerization will be discussed branching due to irradiation or the use of multifunctional monomers (including dienes) will not be... [Pg.56]

Certain chiral organic compounds create crystalline environments and act as enantio-controlling media (7) even though they do not function as true catalysts. Natta s asymmetric reaction of prochiral trans-1,3-pentadiene, which was included in the crystal lattice of chiral perhydro-triphenylene as a host compound, to form an optically active, isotactic polymer on 7-ray irradiation, is a classic example of such a chiral molecular lattice (Scheme 1) (2). Weak van der Waals forces cause a geometric arrangement of the diene monomer that favors one of the possible enantiomeric sequences. [Pg.377]

Several papers have appeared in the literature in recent years showing that certain metal acetylacetonates can function as initiators for the polymerisation of vinyl and diene monomers in bulk and solution (1 - 12). Results for the kinetics of bulk and solution polymerisation are consistent with the view that the reaction occurs by a free-radical mechanism. The usual free-radical kinetics are operative, but an unusual feature is that, in some cases, certain additives such as chlorinated hydrocarbons have an activating effect upon the reaction by inducing more rapid decomposition of the initiator (2,11,12,13). Other additives which have been reported as promotors for the polymerisation include pyridlne(14) and aldehydes and ketones(15). The complexity of the reaction in the presence of such additives is evident from the fact that chloroform has been reported to be an inhibitor for the poly-merlsatlon(3). [Pg.162]

After the examination of the PS photooxidation mechanism, a comparison of the photochemical behavior of PS with that of some of its copolymers and blends is reported in this chapter. The copolymers studied include styrene-stat-acrylo-nitrile (SAN) and acrylonitrile-butadiene-styrene (ABS). The blends studied are AES (acrylonitrile-EPDM-styrene) (EPDM = ethylene-propylene-diene-monomer) and a blend of poly(vinyl methyl ether) (PVME) and PS (PVME-PS). The components of the copolymers are chemically bonded. In the case of the blends, PS and one or more polymers are mixed. The copolymers or the blends can be homogeneous (miscible components) or phase separated. The potential interactions occurring during the photodegradation of the various components may be different if they are chemically bonded or not, homogeneously dispersed or spatially separated. Another important aspect is the nature, the proportions and the behavior towards the photooxidation of the components added to PS. How will a component which is less or more photodegradable than PS influence the degradation of the copolymer or the blend We show in this chapter how the... [Pg.703]

The elastomer determines most of the physical and chemical characteristics of a rubber compound. Typical elastomers are natural elastomers such as natural rubber (NR), sometimes called crepe, and synthetic elastomers such as butyl (including chlorobutyl and bromobutyl), ethylene propylene diene monomer (EPDM), and styrene butadiene rubber (SBR). A list of commonly used elastomers is shown in Table 2. [Pg.1466]

The elastomeric sealing components of the metering valve are particularly critical. In those valves used with CFC propellants, the elastomeric seals have typically been formed from an acrylonitrile/butadiene rubber, which has been cured with sulfur. These rubber seals may not be fully compatible with HFA propellants hence, alternative elastomeric materials have been used. These materials include peroxide-cured acrylonitrile/ butadiene, ethylene-propylene diene monomer (EPDM), and chloroprene and thermoplastic elastomers (TPE). The elastomeric materials used to form the dynamic seals around the stem and the static gasket seal between the can and valve may differ based on the required properties of the rubber for the specific function of the seal. The most important characteristics of the elastomeric seals... [Pg.2275]

When ethylene is copolymerized with substantial amounts (>25%) of propylene an elastomeric copolymer is produced, commonly known as ethylene-propylene rubber (EPR) or ethylene-propylene monomer (EPM) rubber. When a diene, such as dicyclopentadiene, is also included, a terpolymer known as ethylene-propylene-diene monomer (EPDM) rubber is obtained. EPR and EPDM are produced with single site and Ziegler-Natta catalysts and are important in the automotive and construction industries. However, EPR and EPDM are produced in much smaller quantities relative to polyethylene. Elastomers display vastly different properties than other versions of industrial polyethylene and are considered outside the purview of this text. EPR and EPDM will not be discussed further. [Pg.6]

TMPAH was used successfully for the homo-, co-, and block polymerizations of IP. In this case, due to the less reactive diene monomer, no additional free nitroxide was necessary to control the polymerization and both low and high molecular weight polymers (Mn=4500 to Mn=100,000) with narrow molecular weight distributions (Mw/Mn= 1.07-1.3) were synthesized [159]. Copolymers with various styrene and (meth)acrylate derivatives, including acrylic acid and HEMA, were obtained, with the content of isoprene varying from 10% to 90% in the comonomer feed. Block copolymers were also produced, starting from either ptBA or pSt macroinitiators however, the alternate order of blocks (i.e., starting from a pIP macroinitiator) was only achieved with St. Chain extension with tBA resulted in inefficient initiation [159], as had been found for pSt-pnBA block copolymers [71]. [Pg.46]


See other pages where Diene monomers Included is mentioned: [Pg.67]    [Pg.67]    [Pg.124]    [Pg.287]    [Pg.240]    [Pg.364]    [Pg.296]    [Pg.502]    [Pg.580]    [Pg.379]    [Pg.115]    [Pg.194]    [Pg.628]    [Pg.18]    [Pg.98]    [Pg.58]    [Pg.263]    [Pg.292]    [Pg.302]    [Pg.432]    [Pg.364]    [Pg.240]    [Pg.106]    [Pg.251]    [Pg.406]    [Pg.96]    [Pg.357]    [Pg.606]    [Pg.76]    [Pg.189]    [Pg.198]    [Pg.563]   


SEARCH



Diene monomers

© 2024 chempedia.info