Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solvent effects Diels-Alder reactions

This chapter introduces the experimental work described in the following chapters. Some mechanistic aspects of the Diels-Alder reaction and Lewis-acid catalysis thereof are discussed. This chapter presents a critical survey of the literature on solvent ejfects on Diels-Alder reactions, with particular emphasis on the intriguing properties of water in connection with their effect on rate and selectivity. Similarly, the ejfects of water on Lewis acid - Lewis base interactions are discussed. Finally the aims of this thesis are outlined. [Pg.1]

Solvents exert their influence on organic reactions through a complicated mixture of all possible types of noncovalent interactions. Chemists have tried to unravel this entanglement and, ideally, want to assess the relative importance of all interactions separately. In a typical approach, a property of a reaction (e.g. its rate or selectivity) is measured in a laige number of different solvents. All these solvents have unique characteristics, quantified by their physical properties (i.e. refractive index, dielectric constant) or empirical parameters (e.g. ET(30)-value, AN). Linear correlations between a reaction property and one or more of these solvent properties (Linear Free Energy Relationships - LFER) reveal which noncovalent interactions are of major importance. The major drawback of this approach lies in the fact that the solvent parameters are often not independent. Alternatively, theoretical models and computer simulations can provide valuable information. Both methods have been applied successfully in studies of the solvent effects on Diels-Alder reactions. [Pg.8]

In 1961 Berson et al. were the first to study systematically the effect of the solvent on the endo-exo selectivity of the Diels-Alder reaction . They interpreted the solvent dependence of the endo-exo ratio by consideririg the different polarities of the individual activated complexes involved. The endo activated complex is of higher polarity than the exo activated complex, because in the former the dipole moments of diene and dienophile are aligned, whereas in the latter they are pointing in... [Pg.10]

Unfortunately, the number of mechanistic studies in this field stands in no proportion to its versatility" . Thermodynamic analysis revealed that the beneficial effect of Lewis-acids on the rate of the Diels-Alder reaction can be primarily ascribed to a reduction of the enthalpy of activation ( AAH = 30-50 kJ/mole) leaving the activation entropy essentially unchanged (TAAS = 0-10 kJ/mol)" . Solvent effects on Lewis-acid catalysed Diels-Alder reactions have received very little attention. A change in solvent affects mainly the coordination step rather than the actual Diels-Alder reaction. Donating solvents severely impede catalysis . This observation justifies the widespread use of inert solvents such as dichloromethane and chloroform for synthetic applications of Lewis-acid catalysed Diels-Alder reactions. [Pg.13]

The extreme influence water can exert on the Diels-Alder reaction was rediscovered by Breslow in 1980, much by coincidence . Whale studying the effect of p-cyclodextrin on the rate of a Diels-Alder reaction in water, accidentally, the addition of the cyclodextrin was omitted, but still rate constants were observed that were one to two orders of magnitude larger than those obtained in organic solvents. The investigations that followed this remarkable observation showed that the acceleration of Diels-Alder reactions by water is a general phenomenon. Table 1.2 contains a selection from the multitude of Diels-Alder reactions in aqueous media that have been studied Note that the rate enhancements induced by water can amount up to a factor 12,800 compared to organic solvents (entry 1 in Table 1.2). [Pg.19]

Alternatively, authors have repeatedly invoked the internal pressure of water as an explanation of the rate enhancements of Diels-Alder reactions in this solvent ". They were probably inspired by the well known large effects of the external pressure " on rates of cycloadditions. However, the internal pressure of water is very low and offers no valid explanation for its effect on the Diels-Alder reaction. The internal pressure is defined as the energy required to bring about an infinitesimal change in the volume of the solvents at constant temperature pi = (r)E / Due to the open and... [Pg.20]

Tire importance of hydrophobic interactions in the aqueous acceleration is further demonstrated by a qualitative study described by Jenner on the effect of pressure on Diels-Alder reactions in water and a number of organic solvents. Invariably, the reactions in water were less accelerated by pressure than those in organic solvents, which is in line with the notion that pressure diminishes hydrophobic interactions. [Pg.22]

Studies on solvent effects on the endo-exo selectivity of Diels-Alder reactions have revealed the importance of hydrogen bonding interactions besides the already mentioned solvophobic interactions and polarity effects. Further evidence of the significance of the former interactions comes from computer simulations" and the analogy with Lewis-acid catalysis which is known to enhance dramatically the endo-exo selectivity (Section 1.2.4). [Pg.25]

Breslow studied the dimerisation of cyclopentadiene and the reaction between substituted maleimides and 9-(hydroxymethyl)anthracene in alcohol-water mixtures. He successfully correlated the rate constant with the solubility of the starting materials for each Diels-Alder reaction. From these relations he estimated the change in solvent accessible surface between initial state and activated complex " . Again, Breslow completely neglects hydrogen bonding interactions, but since he only studied alcohol-water mixtures, the enforced hydrophobic interactions will dominate the behaviour. Recently, also Diels-Alder reactions in dilute salt solutions in aqueous ethanol have been studied and minor rate increases have been observed Lubineau has demonstrated that addition of sugars can induce an extra acceleration of the aqueous Diels-Alder reaction . Also the effect of surfactants on Diels-Alder reactions has been studied. This topic will be extensively reviewed in Chapter 4. [Pg.26]

The most effective Lewis-acid catalysts for the Diels-Alder reaction are hard cations. Not surprisingly, they coordinate to hard nuclei on the reacting system, typically oxygen atoms. Consequently, hard solvents are likely to affect these interactions significantly. Table 1.4 shows a selection of some solvents ranked according to their softness. Note that water is one of the hardest... [Pg.29]

A combination of the promoting effects of Lewis acids and water is a logical next step. However, to say the least, water has not been a very popular medium for Lewis-acid catalysed Diels-Alder reactions, which is not surprising since water molecules interact strongly with Lewis-acidic and the Lewis-basic atoms of the reacting system. In 1994, when the research described in this thesis was initiated, only one example of Lewis-acid catalysis of a Diels-Alder reaction in water was published Lubineau and co-workers employed lanthanide triflates as a catalyst for the Diels-Alder reaction of glyoxylate to a relatively unreactive diene . No comparison was made between the process in water and in organic solvents. [Pg.31]

What is the effect of water on the rate and selectivity of the Lewis-acid catalysed Diels-Alder reaction, when compared to oiganic solvents Do hydrogen bonding and hydrophobic interactions also influence the Lewis-acid catalysed process Answers to these questions will be provided in Chapter 2. [Pg.32]

The Diels-Alder reaction is often quoted as an example of a reaction that is little influenced by the solvent. However, this is not fully justified, since particularly water can have a pronounced effect on the rate of this reaction. This was first noticed by E elte et al." in 1973 and rediscovered in 1980 by Breslow In the years that followed this intriguing discovery, it turned out that acceleration of Diels-Alder reactions by water is a general phenomenon that can ultimately result in up to 12,800 fold accelerations". Synthetic applications followed rapidly". ... [Pg.43]

Table 2.4. Solvent effect on the Hammett p-values for the Diels-Alder reaction of2.4 with 2.5 catalysed by Cu(N03)2 at 25 - C. Table 2.4. Solvent effect on the Hammett p-values for the Diels-Alder reaction of2.4 with 2.5 catalysed by Cu(N03)2 at 25 - C.
The rate constants for the catalysed Diels-Alder reaction of 2.4g with 2.5 (Table 2.3) demonstrate that the presence of the ionic group in the dienophile does not diminish the accelerating effect of water on the catalysed reaction. Comparison of these rate constants with those for the nonionic dienophiles even seems to indicate a modest extra aqueous rate enhancement of the reaction of 2.4g. It is important to note here that no detailed information has been obtained about the exact structure of the catalytically active species in the oiganic solvents. For example, ion pairing is likely to occur in the organic solvents. [Pg.56]

Table 2,8, Solvent effect on the endo-exo selectivity (% endo -% exo) of the nncatalysed and Cu" -ion catalysed Diels-Alder reaction between 2,4c and 2,5 at 25°C. Table 2,8, Solvent effect on the endo-exo selectivity (% endo -% exo) of the nncatalysed and Cu" -ion catalysed Diels-Alder reaction between 2,4c and 2,5 at 25°C.
Clearly, complete understanding of solvent effects on the enantioselectivity of Lewis-acid catalysed Diels-Alder reactions has to await future studies. For a more detailed mechanistic understanding of the origins of enantioselectivity, extension of the set of solvents as well as quantitative assessment of the strength of arene - arene interactions in these solvent will be of great help. [Pg.97]

Interestingly, at very low concentrations of micellised Qi(DS)2, the rate of the reaction of 5.1a with 5.2 was observed to be zero-order in 5.1 a and only depending on the concentration of Cu(DS)2 and 5.2. This is akin to the turn-over and saturation kinetics exhibited by enzymes. The acceleration relative to the reaction in organic media in the absence of catalyst, also approaches enzyme-like magnitudes compared to the process in acetonitrile (Chapter 2), Cu(DS)2 micelles accelerate the Diels-Alder reaction between 5.1a and 5.2 by a factor of 1.8710 . This extremely high catalytic efficiency shows how a combination of a beneficial aqueous solvent effect, Lewis-acid catalysis and micellar catalysis can lead to tremendous accelerations. [Pg.143]

First of all, given the well recognised promoting effects of Lewis-acids and of aqueous solvents on Diels-Alder reactions, we wanted to know if these two effects could be combined. If this would be possible, dramatic improvements of rate and endo-exo selectivity were envisaged Studies on the Diels-Alder reaction of a dienophile, specifically designed for this purpose are described in Chapter 2. It is demonstrated that Lewis-acid catalysis in an aqueous medium is indeed feasible and, as anticipated, can result in impressive enhancements of both rate and endo-exo selectivity. However, the influences of the Lewis-acid catalyst and the aqueous medium are not fully additive. It seems as if water diminishes the catalytic potential of Lewis acids just as coordination of a Lewis acid diminishes the beneficial effects of water. Still, overall, the rate of the catalysed reaction... [Pg.161]

We conclude that the beneficial effects of water are not necessarily limited to reactions that are characterised by a negative volume of activation. We infer that, apart from the retro Diels-Alder reaction also other reactions, in which no significant reduction or perhaps even an increase of solvent accessible surface area takes place, can be accelerated by water. A reduction of the nonpolar nature during the activation process is a prerequisite in these cases. [Pg.168]

This thesis describes a study of catalysis of Diels-Alder reactions in water. No studies in this field had been reported at the start of the research, despite the well known beneficial effects of acpieous solvents as well as of Lewis-add catalysts on rate and endo-exo selectivity of Diels-Alder reactions in organic solvents. We envisaged that a combination of these two effects might well result in extremely large rate enhancements and improvements of the endo-exo selectivity. [Pg.173]

In Chapter 1 mechanistic aspects of Are Diels-Alder reaction are discussed. The literature on the effects of solvents and Lewis-acid catalysts on this reaction is surveyed. The special properties of water are reviewed and the effects of water on the Diels-Alder reaction is discussed. Finally, the effect of water on Lewis acid - Lewis base interactions is described. [Pg.173]


See other pages where Solvent effects Diels-Alder reactions is mentioned: [Pg.44]    [Pg.8]    [Pg.2]    [Pg.4]    [Pg.8]    [Pg.8]    [Pg.8]    [Pg.8]    [Pg.9]    [Pg.9]    [Pg.10]    [Pg.11]    [Pg.19]    [Pg.19]    [Pg.22]    [Pg.22]    [Pg.23]    [Pg.26]    [Pg.31]    [Pg.43]    [Pg.44]    [Pg.54]    [Pg.56]    [Pg.62]    [Pg.63]    [Pg.75]    [Pg.97]    [Pg.168]   
See also in sourсe #XX -- [ Pg.1065 ]

See also in sourсe #XX -- [ Pg.19 , Pg.20 ]

See also in sourсe #XX -- [ Pg.1049 , Pg.1050 , Pg.1051 , Pg.1052 ]

See also in sourсe #XX -- [ Pg.476 , Pg.477 ]

See also in sourсe #XX -- [ Pg.446 , Pg.447 ]

See also in sourсe #XX -- [ Pg.446 , Pg.447 ]

See also in sourсe #XX -- [ Pg.446 , Pg.447 ]

See also in sourсe #XX -- [ Pg.19 , Pg.20 ]

See also in sourсe #XX -- [ Pg.1049 , Pg.1050 , Pg.1051 , Pg.1052 ]

See also in sourсe #XX -- [ Pg.1049 , Pg.1050 , Pg.1051 , Pg.1052 ]

See also in sourсe #XX -- [ Pg.476 , Pg.477 ]

See also in sourсe #XX -- [ Pg.228 ]

See also in sourсe #XX -- [ Pg.95 , Pg.96 , Pg.97 , Pg.98 , Pg.354 , Pg.414 , Pg.446 , Pg.447 , Pg.476 , Pg.477 ]

See also in sourсe #XX -- [ Pg.3 , Pg.2035 ]




SEARCH



Diels solvents

Diels-Alder cycloaddition reactions, solvent effects

Diels-Alder reaction solvent

Diels-Alder reactions effects

Solvent effects in the Diels-Alder reaction

Solvent effects on Diels—Alder reactions

© 2024 chempedia.info