Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diels-Alder reactions adduct

Butenediol is a weak dienophile in Diels-Alder reactions. Adducts have been described with anthracene (108) and with hexachlorocyclopentadiene... [Pg.107]

Scheme 18. If the repetitive Diels-Alder reaction adducts reported were being formed under thermodynamic control, heating the hexadecadeutero 2 1 adduct 68 under reflux in toluene in the presence of a 10 molar equivalent of the bisdiene 37 should give rise to a mixture of compounds comprised of 68, 69, and 41. A retro Diels-Alder reaction of 68, followed by scrambling of the labeled bisdiene 66 with the excess of the bisdiene 37 should favor preferential cycloaddition with 37 to afford 69. The excess of 37 should ultimately drive the equilibration process toward the unlabeled 2 1 adduct 41. No evidence for such an equilibration process has been found... [Pg.48]

Asymmetric Diels-Alder Reaction of Unsaturated Carboxylic Acids. A chiral acyloxyborane (CAB) complex (1) prepared from mono(2,6-dimethoxybenzoyl)tartaric acid and 1 equiv of borane is an excellent catalyst for the Diels-Alder reaction of a,p-unsaturated carboxylic acids and dienes. In the CAB-catalyzed Diels-Alder reaction, adducts are formed in a highly diastereo- and enantioselective manner under mild reaction conditions (eq 2). The reaction is catalytic 10 mol % of catalyst is sufficient for efficient conversion, and the chiral auxiliary can be recovered and reused. [Pg.230]

Diels-Alder reactions. Adducts of high ee are obtainable from the condensation of a-pyrone derivatives with enol ethers catalyzed by Ti-BINOLate. ... [Pg.26]

The a-chloronitroso-sugar 58 was synthesized by reaction of the corresponding oximino-lactone with tert-butyl hypochlorite and used as a dienophile in asymmetric hetero-Diels-Alder reactions. Adducts were produced as hydrochloride salts in 93-99% ee with simultaneous solvolytic removal of the auxiliary. ... [Pg.145]

Since the octatetrene contains two CH CH-CH CH units, it will readily combine with two molecules of maleic anhydride and other adducts by the Diels-Alder reaction (p. 292). [Pg.239]

Compounds containing a double or triple bond, usually activated by additional unsaturation (carbonyl, cyano, nitro, phenyl, etc.) In the ap position, add to the I 4-positions of a conjugated (buta-1 3-diene) system with the formation of a ax-membered ring. The ethylenic or acetylenic compound is known as the dieTwphile and the second reactant as the diene the product is the adduct. The addition is generally termed the Diels-Alder reaction or the diene synthesis. The product in the case of an ethylenic dienophile is a cyctohexene and in that of an acetylenic dienophile is a cyctohexa-1 4-diene. The active unsaturated portion of the dienophile, or that of the diene, or those in both, may be involved in rings the adduct is then polycyclic. [Pg.941]

Figure 1.2. Endo and exo pathway for the Diels-Alder reaction of cyclopentadiene with methyl vinyl ketone. As was first noticed by Berson, the polarity of the endo activated complex exceeds that of the exo counterpart due to alignment of the dipole moments of the diene and the dienophile K The symmetry-allowed secondary orbital interaction that is only possible in the endo activated complex is usually invoked as an explanation for the preference for endo adduct exhibited by most Diels-Alder reactions. Figure 1.2. Endo and exo pathway for the Diels-Alder reaction of cyclopentadiene with methyl vinyl ketone. As was first noticed by Berson, the polarity of the endo activated complex exceeds that of the exo counterpart due to alignment of the dipole moments of the diene and the dienophile K The symmetry-allowed secondary orbital interaction that is only possible in the endo activated complex is usually invoked as an explanation for the preference for endo adduct exhibited by most Diels-Alder reactions.
The effect of ligands on the endo-exo selectivity of Lewis-acid catalysed Diels-Alder reactions has received little attention. Interestingly, Yamamoto et al." reported an aluminium catalyst that produces mainly exo Diels-Alder adduct. The endo-approach of the diene, which is normally preferred, is blocked by a bulky group in the ligand. [Pg.91]

This goal might well be achieved by introducing an auxiliary that aids the coordination to the catalyst. After completion of the Diels-Alder reaction and removal of the auxiliary the desired adduct is obtained. This approach is summarised in Scheme 4.6. Some examples in which a temporary additional coordination site has been introduced to aid a catalytic reaction have been reported in the literature and are described in Section 4.2.1. Section 4.2.2 relates an attempt to use (2-pyridyl)hydrazone as coordinating auxiliary for the Lewis-acid catalysed Diels-Alder reaction. [Pg.111]

Fortunately, in the presence of excess copper(II)nitrate, the elimination reaction is an order of magnitude slower than the desired Diels-Alder reaction with cyclopentadiene, so that upon addition of an excess of cyclopentadiene and copper(II)nitrate, 4.51 is converted smoothly into copper complex 4.53. Removal of the copper ions by treatment with an aqueous EDTA solution afforded in 71% yield crude Diels-Alder adduct 4.54. Catalysis of the Diels-Alder reaction by nickel(II)nitrate is also... [Pg.116]

Indoles are usually constructed from aromatic nitrogen compounds by formation of the pyrrole ring as has been the case for all of the synthetic methods discussed in the preceding chapters. Recently, methods for construction of the carbocyclic ring from pyrrole derivatives have received more attention. Scheme 8.1 illustrates some of the potential disconnections. In paths a and b, the syntheses involve construction of a mono-substituted pyrrole with a substituent at C2 or C3 which is capable of cyclization, usually by electrophilic substitution. Paths c and d involve Diels-Alder reactions of 2- or 3-vinyl-pyrroles. While such reactions lead to tetrahydro or dihydroindoles (the latter from acetylenic dienophiles) the adducts can be readily aromatized. Path e represents a category Iley cyclization based on 2 -I- 4 cycloadditions of pyrrole-2,3-quinodimcthane intermediates. [Pg.79]

The simplest of all Diels-Alder reactions cycloaddition of ethylene to 1 3 butadi ene does not proceed readily It has a high activation energy and a low reaction rate Substituents such as C=0 or C=N however when directly attached to the double bond of the dienophile increase its reactivity and compounds of this type give high yields of Diels-Alder adducts at modest temperatures... [Pg.409]

A very large number of Diels-Alder reactions are recorded in the chemical literature many of which involve relatively complicated dienes dienophiles or both On the basis of your knowl edge of Diels-Alder reactions predict the constitution of the Diels-Alder adduct that you would expect to be formed from the following combinations of dienes and dienophiles... [Pg.421]

Discussion of ladder polymers also enables us to introduce a step-growth polymerization that deviates from the simple condensation reactions which we have described almost exclusively in this chapter. The Diels-Alder reaction is widely used in the synthesis of both ladder and semiladder polymers. In general, the Diels-Alder reaction occurs between a diene [XVI] and a dienophile [XVll] and yields an adduct with a ring structure [XVlll] ... [Pg.337]

Furan and maleic anhydride undergo the Diels-Alder reaction to form the tricycHc 1 1 adduct, 7-oxabicyclo [2.2.1]hept-5-ene-2,3-dicarboxyHc anhydride (4) in exceUent yield. Other strong dienophiles also add to furan (88). Although both endo and exo isomers are formed initially, the former rapidly isomerize to the latter in solution, even at room temperature. The existence of a charge-transfer complex in the system has been demonstrated (89,90). [Pg.81]

Vinylboranes are interesting dienophiles in the Diels-Alder reaction. Alkenylboronic esters show moderate reactivity and give mixtures of exo and endo adducts with cyclopentadiene and 1,3-cyclohexadiene (441). Dichloroalkenylboranes are more reactive and dialkylalkenylboranes react even at room temperature (442—444). Dialkylalkenylboranes are omniphilic dienophiles insensitive to diene substitution (444). In situ formation of vinyl-boranes by transmetaHation of bromodialkylboranes with vinyl tri alkyl tin compounds makes possible a one-pot reaction, avoiding isolation of the intermediate vinylboranes (443). Other cycloadditions of alkenyl- and alkynylboranes are known (445). [Pg.321]

Diels-Alder reaction of 2-bromoacrolein and 5-[(ben2yloxy)meth5i]cyclopentadiene in the presence of 5 mol % of the catalyst (35) afforded the adduct (36) in 83—85% yield, 95 5 exo/endo ratio, and greater than 96 4 enantioselectivity. Treatment of the aldehyde (36) with aqueous hydroxylamine, led to oxime formation and bromide solvolysis. Tosylation and elimination to the cyanohydrin followed by basic hydrolysis gave (24). [Pg.159]

Sulfur dioxide acts as a dienophile ia the Diels-Alder reaction with many dienes (253,254) and this reaction is conducted on a commercial scale with butadiene. The initial adduct, sulfolene [77-79-2] is hydrogenated to a solvent, sulfolane [126-33-0] which is useful for selective extraction of aromatic hydrocarbons from... [Pg.145]

In a novel approach to vitamin K, Hoffmann-La Roche has exploited the potential acidity at C-3 as a means to attach the side chain of vitamin (36). Menadione was reacted with cyclopentadiene to yield the Diels-Alder adduct. The adduct is treated with base and alkylated at C-3 with phytyl chloride. A retro Diels-Alder reaction yields vitamin K. Process improvements in this basic methodology have been claimed by Japanese workers (37). [Pg.153]

Dicyanoacetylene, 2-hiitynedinitri1e, is obtained from dimethyl acetylenedicarboxylate by ammonolysis to the diamide, which is dehydrated with phosphoms pentoxide (44). It bums in oxygen to give a flame with a temperature of 5260 K, the hottest flame temperature known (45). Alcohols and amines add readily to its acetylenic bond (46). It is a powerhil dienophile in the Diels-Alder reaction it adds to many dienes at room temperature, and at 180°C actually adds 1,4- to benzene to give the bicyclo adduct (7) [18341 -68-9] C QHgN2 (47). [Pg.405]

Dicyclopentadienedicarboxyhc acid can undergo a Diels-Alder reaction in the presence of a stoichiometric amount of a dienophile at 140—190°C to give an adduct of the monomeric acid. The yield of adduct is usually 75—95%. A large number of polyfunctional compounds are easily prepared in this manner. The reaction with maleic anhydride gives a tribasic acid. [Pg.435]

Benzo[Z)]furans and indoles do not take part in Diels-Alder reactions but 2-vinyl-benzo[Z)]furan and 2- and 3-vinylindoles give adducts involving the exocyclic double bond. In contrast, the benzo[c]-fused heterocycles function as highly reactive dienes in [4 + 2] cycloaddition reactions. Thus benzo[c]furan, isoindole (benzo[c]pyrrole) and benzo[c]thiophene all yield Diels-Alder adducts (137) with maleic anhydride. Adducts of this type are used to characterize these unstable molecules and in a similar way benzo[c]selenophene, which polymerizes on attempted isolation, was characterized by formation of an adduct with tetracyanoethylene (76JA867). [Pg.67]

HC(17)1, p. 53), and by retro-Diels-Alder reaction of the adduct from norbornadiene and fulminic acid <67AG(E)456). [Pg.83]

Diels-Alder reactions in the presence of Lewis acids represent a case in which the Lewis acid is often used in catalytic quantities. The complexed ester (ethyl acrylate in the example given below) is substantially more reactive than the uncomplexed molecule, and the reaction proceeds through the complex. The reactive complex is regenerated by exchange of the Lewis acid from the adduct. [Pg.236]

Another stereochemical feature of the Diels-Alder reaction is addressed by the Alder rule. The empirical observation is that if two isomeric adducts are possible, the one that has an unsaturated substituent(s) on the alkene oriented toward the newly formed cyclohexene double bond is the preferred product. The two alternative transition states are referred to as the endo and exo transition states ... [Pg.637]

BMI also reacts with dienes to form Diels-Alder adducts [12]. When BMI reacts with a a,(n-biscyclopentadienyl compound or other bis-diene resin, the bis-maleimide chain is extended by the Diels-Alder reaction. Bis-maleimide, chain extended with bis-diene, is not used in adhesives. However, as the Diels-Alder reaction is reversible, there may be a possibility of recyclability of the cured resin by depolymerization of the backbone (Fig. 6). [Pg.815]

Although hexafluoro-l,3-butadiene is better known for its [2+2] reactions, its Diels-Alder reactions, particularly with electron-deficient alkenes such as acrylonitrile and perfluoropropene, are not unknown [9] The first report of a Diels-Alder reaction is with an acetylenic dienophile Although the major product of Us reaction with phenylacetylene is its [2+2] adduct, a 3 5% yield of products of a Diels-Alder reaction is also observed [123] (equation 103)... [Pg.834]

Perfluorotetramethylthiadiphosphanorbornadiene and bis(trifluoromethyl) thiadiphosphole can be prepared by thermolysis of an adduct of methanol and hexakis(trifluoromethyl)-l,4-diphosphabarrelene with sulfur [113] (equation 23) Pyrolysis of the adduct of hexafluorinated Dewar benzene and phenyl azide results in ring expansion giving azepine, which photochemically yields an intramolecular 2-1-2 adduct, a good dienophile for the Diels-Alder reaction [114, //5] (equation 24) Thermolysis of fluonnated derivatives of 1,5-diazabicyclo-... [Pg.920]


See other pages where Diels-Alder reactions adduct is mentioned: [Pg.6]    [Pg.11]    [Pg.61]    [Pg.63]    [Pg.95]    [Pg.113]    [Pg.119]    [Pg.162]    [Pg.177]    [Pg.318]    [Pg.438]    [Pg.262]    [Pg.174]    [Pg.85]    [Pg.76]    [Pg.125]    [Pg.272]   
See also in sourсe #XX -- [ Pg.8 , Pg.9 , Pg.15 ]




SEARCH



Diels adduct

Diels-Alder adduct

© 2024 chempedia.info