Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diels-Alder dienes Isoprene

A number of cyclohexene derivatives can be cleaved thermally to an olefin and a diene, preferably by passage in the vapor phase over red-hot metal wires. This is the reverse of the Diels-Alder diene synthesis. The oldest example is the formation of isoprene from dipentene described by Harries and Gottlob 96... [Pg.1032]

The cyclohexene ring of racemic a-terpineol, which smells like the blossoms of lilac and is used in perfumes and for denaturing fats in soap manufaeture, is set up by a Diels-Alder reaction Isoprene is the diene, and methyl arylate the approp-... [Pg.123]

Isoprene is highly reactive both as a diene and through its allyhc hydrogens, and its reactions are similar to those of butadiene (qv) (8). Apart from polymerisation, the most widely investigated isoprene reactions are the formation of six-membered rings by the Diels-Alder reaction ... [Pg.463]

Maleic anhydride has been used in many Diels-Alder reactions (29), and the kinetics of its reaction with isoprene have been taken as proof of the essentially transoid stmcture of isoprene monomer (30). The Diels-Alder reaction of isoprene with chloromaleic anhydride has been analy2ed using gas chromatography (31). Reactions with other reactive hydrocarbons have been studied, eg, the reaction with cyclopentadiene yields 2-isopropenylbicyclo[2.2.1]hept-5-ene (32). Isoprene may function both as diene and dienophile in Diels-Alder reactions to form dimers. [Pg.463]

To overcome these problems with the first generation Brmsted acid-assisted chiral Lewis acid 7, Yamamoto and coworkers developed in 1996 a second-generation catalyst 8 containing the 3,5-bis-(trifluoromethyl)phenylboronic acid moiety [10b,d] (Scheme 1.15, 1.16, Table 1.4, 1.5). The catalyst was prepared from a chiral triol containing a chiral binaphthol moiety and 3,5-bis-(trifluoromethyl)phenylboronic acid, with removal of water. This is a practical Diels-Alder catalyst, effective in catalyzing the reaction not only of a-substituted a,/ -unsaturated aldehydes, but also of a-unsubstituted a,/ -unsaturated aldehydes. In each reaction, the adducts were formed in high yields and with excellent enantioselectivity. It also promotes the reaction with less reactive dienophiles such as crotonaldehyde. Less reactive dienes such as isoprene and cyclohexadiene can, moreover, also be successfully employed in reactions with bromoacrolein, methacrolein, and acrolein dienophiles. The chiral ligand was readily recovered (>90%). [Pg.13]

The Diels-Alder reaction catalyzed by this chiral titanium catalyst 31 has wide generality (Scheme 1.53, 1.54, Table 1.22, 1.23). Acryloyl- and fumaroyl-oxazolidinones react with isoprene giving cycloadducts in high optical purity. 2-Ethylthio-l,3-buta-diene can also be successfully employed as the diene [42]. [Pg.36]

Highly uMtr-diastereofacial selective cycloaddition of isoprene (2) with 4-isopropyl-2-cyclohexenone allowed a short regiocontrolled and stereocon-trolled synthesis [13] of jS-cadinene and (y2-cadinene, Scheme 3.3). High anti-diastereofacial selectivity also occurs in the Diels-Alder reaction of optically active cyclohexenones 6-9 (Figure 3.2), readily available from the chiral pool, with open chain dienes [14-16]. Their cycloadducts are valuable intermediates in the synthesis of optically active sesquiterpenes in view of the easy conversion of the gem-dimethylcyclopropane and gem-dimethylcyclobutane in a variety of substituents. [Pg.102]

Similarly a marked increase of regioselectivity has been shown in the catalyzed Diels-Alder reactions of the chiral bicyclic lactame 24 (Scheme 3.9) with a variety of dienes [27] (isoprene, mircene, (E,E)-L4-dimethylbutadiene, 2,3-di-methylbutadiene, 2-siloxybutadiene). The catalyzed reactions were more regio-selective and totally enJo-antz-diastereoselective anti with respect to the bridgehead methyl group). The results of the cycloadditions with isoprene and mircene are reported in Scheme 3.9. The cycloadducts have then been used to provide interesting fused carbocycles [28] with high enantiomeric purity as shown in Scheme 3.10. [Pg.107]

Supported Lewis acids are an interesting class of catalysts because of their operational simplicity, filterability and reusability. The polymer-bound iron Lewis-acid 53 (Figure 3.8) has been found [52] to be active in the cycloadditions of a, S-unsaturated aldehydes with several dienes. It has been prepared from (ri -vinylcyclopentadienyl)dicarbonylmethyliron which was copolymerized with divinylbenzene and then treated with trimethylsilyltriflate followed by THF. Some results of the Diels-Alder reactions of acrolein and crotonaldehyde with isoprene (2) and 2,3-dimethylbutadiene (4) are summarized in Equation 3.13. [Pg.115]

Fluoboric acid is also an efficacious promoter of cyclic oxo-carbenium ions (Scheme 4.24) bearing an activated double bond which, in the presence of open-chain and cyclic dienes, rapidly undergo a Diels-Alder reaction [91]. Chiral a, -unsaturated ketones bearing a -hydroxy substituents, protected as acetals, react with various dienes in the presence of HBF4, affording Diels-Alder adducts that were isolated as alcohols by hydrolysis of the acetal group by TsOH. Some examples of reactions with isoprene are reported in Table 4.23. The enantios-electivity of the reaction is dependent on the size of the substituent R on the of-carbon high levels of asymmetric induction were observed with R = z-Pr (90 1) and R = t-Bu (150 1) and low levels with R = Me (2.7 1) and R = Ph (3.0 1). Scheme 4.24 shows the postulated reaction mechanism. [Pg.187]

Nafion-H (144), a perfluorinated resin-sulfonic acid, is an efficient Bronsted-acid catalyst which has two advantages it requires only catalytic amounts since it forms reversible complexes, and it avoids the destruction and separation of the catalyst upon completion of the reaction [94], Thus in the presence of Nafion-H, 1,4-benzoquinone and isoprene give the Diels-Alder adduct in 80% yield at 25 °C, and 1,3-cyclohexadiene reacts with acrolein at 25 °C affording 88 % of cycloadduct after 40 h, while the uncatalyzed reactions give very low yields after boiling for 1 h or at 100 °C for 3.5 h respectively [95], Other examples are given in Table 4.24. In the acid-catalyzed reactions that use highly reactive dienes such as isoprene and 2,3-dimethylbutadiene, polymerization of alkenes usually occurs with Nafion-H, no polymerization was observed. [Pg.189]

In the same area, a (5)-tryptophan-derived oxazaborolidine including a p-tolylsulfonylamide function has been used by Corey et al. to catalyse the enantioselective Diels-Alder reaction between 2-bromoacrolein and cyclo-pentadiene to form the corresponding chiral product with an unprecedented high (> 99% ee) enantioselectivity (Scheme 5.27)." This highly efficient methodology was extended to various 2-substituted acroleins and dienes such as isoprene and furan. In addition, it was applied to develop a highly efficient total synthesis of the potent antiulcer substance, cassiol, as depicted in Scheme 5.21... [Pg.204]

The Diels-Alder reactions of alkyl-substituted benzoquinones with penta-1,3-diene and isoprene were also studied in aqueous cyclodextrin solutions. Highly enhanced ortho- and mefa-regioselectivities were observed (Eq. 12.11).48... [Pg.383]

It was also well established that silenes could take part as the dienophile in Diels-Alder reactions. In many cases, particularly with unsymmetric dienes such as isoprene, the reactions were not clean because, in addition to formation of the [2+4] cycloadduct 61, the possibility exists for the formation of it regioisomer 62, products of an ene reaction 63, and conceivably the [2+2] cycloaddition product 64, as shown in Eq. (23). Wiberg... [Pg.102]

It has been known that aromatic heterocycles such as furan, thiophene, and pyrrole undergo Diels-Alder reactions despite their aromaticity and hence expected inertness. Furans have been especially used efficiently as dienes due to their electron-rich properties. Thiophenes and pyrroles are less reactive as dienes than furans. But pyrroles with A-elecIron-withdrawing substituents are efficient dienes. There exists a limited number of examples of five-membered, aromatic heterocycles acting as dienophiles in Diels-Alder reactions. Some nitro heteroaromatics serve as dienophiles in the Diels-Alder reactions. Heating a mixture of l-(phenylsulfonyl)-3-nitropyrrole and isoprene at 175 °C followed by oxidation results in the formation of indoles (see Eq. 8.22).35a A-Tosyl-3-nitroindole undergoes high-yielding Diels-Alder reactions with... [Pg.240]

Recently, much attention has been paid to hetero Diels-Alder reactions as powerful tools for the construction of heterocyclic compounds. For example, cycloaddition of 2,3-dimethylbuta-l,3-diene 41a with 1,2-thiazinylium salt 95, in acetonitrile at room temperature, resulted in the exclusive formation of product 76a resulting from cycloaddition across the C—S1 bond (see entry 1 in Table 15 and Equation 26) <1999TL1505>. Similarly, isoprene 41b and... [Pg.498]

Diacylmethylene)cyclopropanes (34) generated from the corresponding aminocyclopropanes 33 and acetylchloride (Scheme 6) are highly reactive intermediates and can be trapped by dienes such as 2,3-dimethylbutadiene (35), pentadiene 36 and isoprene (37) yielding the Diels-Alder products 38-40 [14]... [Pg.16]

The reactions of 4-nitrobenzodifuroxan 242 with a series of common dienes, such as cyclopentadiene, cyclohexa-diene, isoprene, 2,3-dimethylbutadiene, and 1-acetoxybutadiene, with ethoxymethyleneacetylacetone were found to proceed very readily to afford stable cycloadducts, which are the result of highly stereoselective normal electron-demand (NED) Diels-Alder reactions. Due to the additional activation provided by the two adjacent furoxan rings, the nitroalkene double bond of compound 242 is also prone to undergo NED reactions with less reactive dienic structures, such as the enol form of ethoxymethyleneacetylacetone and the in situ generated 2-ethoxy-4-(2-furfur-yl)buta-l,3-diene <2004TL1037, 2005T8167>. [Pg.363]

Narasaka et al.16 reported that 53 catalyzes Diels-Alder reactions of 54-type substrates with diene in the presence of 4 A molecular sieves (Scheme 5-18). A remarkable solvent effect on the enantioselectivity is observed. High enantio-selectivity is attained using mesitylene as the solvent. As shown in Scheme 5-18, the reaction of 54a with isoprene proceeds smoothly in this solvent, affording product 55a with 92% ee. Other 3-(3-substituted acryloyl)-l,3-oxazolidin-2-ones 54b-d also give good results (75-91% ee) when reacted with cyclopentadiene. [Pg.280]

The complex [Cp2Zr(OTf)2(thf)] is a catalyst for the Diels—Alder reactions of 105 compared to the corresponding thermal reactions [82,83] (Scheme 8.45). The isomer ratio of the reaction products (endo/exo or regioisomers) is higher in catalyzed than in thermal reactions. However, because the zir-conocenium triflate is also a catalyst for the polymerization of 1,3-dienes, the Diels—Alder reaction is sometimes completely suppressed in the case of less reactive dienophile-diene combinations. [Pg.310]

Ohfune and coworkers78 used Diels-Alder reactions between 2-trimethylsilyloxy-l,3-butadiene (63) and acrylate esters 64 to synthesize constrained L-glutamates which they intended to use for the determination of the conformational requirements of glutamate receptors. The reactions between 63 and acrylate esters 64a and 64b did not proceed. Changing the ethyl and methyl ester moieties into more electron-deficient ester moieties, however, led to formation of Diels-Alder adducts, the yields being moderate to good. In nearly all cases, the cycloadducts were obtained as single diastereomers, which is indicative of a complete facial selectivity (equation 22, Table 1). Other dienes, e.g. cyclopentadiene and isoprene, also showed a markedly enhanced reactivity toward acrylate 64g in comparison with acrylate 64a. [Pg.348]

An unusual Diels-Alder cycloaddition involving the Cp=Cy bond has been described. The reaction took place by treatment of the electron-deficient allenylidene moiety in complex [RuCp(=C=C=CPh2)(CO)(P -Pr3)][BF4] (46) with a 20-fold excess of isoprene at room temperature affording the cycloadduct 90 (Scheme 33) [287]. This Diels-Alder cycloaddition in which the allenylidene moiety acts as a dienophile was completely regioselective, only the Cp=Cy bond of the allenylidene skeleton being implicated. Furthermore, it was also regioselective with regard to the orientation of the diene with the exclusive attack of C(l) and C(4) carbons at the Cp and Cy positions, respectively. Allenylidene 46 also underwent Diels-Alder reactions with cyclopentadiene and cyclohexadiene to afford the... [Pg.191]

Also the use of moisture stable ionic liquids as solvents in the Diels-Alder reaction has been carried out, and in all examples an enhanced reaction rate was observed [182,183]. The application of pyridinium-based ionic liquids allowed the utilization of isoprene as diene [184]. The chiral ionic liquid [bmim][L-lactate] was used as a solvent and accelerated the reaction of cyclopentadiene and ethyl acrylate, however, no enantiomeric excess was observed [183]. In addition several amino acid based ionic liquids have been recently tested in the Diels-Alder reaction. Similar exo. endo ratios were found but the product was obtained as racemate. The ionic liquids were prepared by the addition of equimolar amounts of HNO3 to the amino acids [185]. Furthermore, an enantiopure imidazolium salt incorporating a camphor motive was tested in the Diels-Alder reaction. No enantiomeric excess was found [186]. [Pg.380]

FIGURE 16.10 A biosynthetic pathway proposed for the formation of the chalcone-isoprene Diels-Alder adduct, sanggenon R (182), after Hano et The fate of the diene is indicated in bold type. [Pg.1030]

The Diels-Alder cycloaddition of cyclobut-1-cnyl ketones onto various buta-1,3-dienes in the presence of a Lewis acid afforded good yields of adducts with cyclobutane frameworks. For example, 1-acetylcyclobutcnc reacted with isoprene in the presence of aluminum trichloride to give l-acetyl-4-methylbicyclo[4.2.0]oct-3-ene (17) in 91 % yield.23... [Pg.35]

When two dienes react, mixtures are quite possible. Thus, butadiene and isoprene (CH2=CH—CMe=CH2) gave all nine possible Diels-Alder adducts, as well as eight-mem-... [Pg.839]

Cycloaddition and ene reactions. Dienes >C=C—C=C< such as buta-1,3-diene, isoprene, 2,3-dimethylbuta-l,3-diene, fraws-piperylene, cyclopentadiene or anthracene react with 92 in Diels-Alder fashion to give [2 + 4] cycloadducts 410 (equation 128)62. Ene products 411 are formed additionally when the relative reaction rates for the [2 + 4] cycloaddition reaction and the ene reaction are comparable (e.g. for isoprene and 2,3-dimethyl-l,3-butadiene) Alkenes with allylic hydrogen (propene, 2-butene, isobutene) give ene products see equation 129. [Pg.941]


See other pages where Diels-Alder dienes Isoprene is mentioned: [Pg.47]    [Pg.204]    [Pg.254]    [Pg.240]    [Pg.183]    [Pg.1062]    [Pg.216]    [Pg.194]    [Pg.558]    [Pg.290]    [Pg.111]    [Pg.343]    [Pg.398]    [Pg.369]    [Pg.11]    [Pg.1030]    [Pg.183]    [Pg.331]    [Pg.547]    [Pg.308]    [Pg.449]   
See also in sourсe #XX -- [ Pg.196 ]




SEARCH



Diels-Alder dienes

© 2024 chempedia.info