Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diazoalkanes, reaction with alkenes

The normal electron-demand principle of activation of 1,3-dipolar cycloaddition reactions of nitrones has also been tested for the 1,3-dipolar cycloaddition reaction of alkenes with diazoalkanes [71]. The reaction of ethyl diazoacetate 33 with 19b in the presence of a TiCl2-TADDOLate catalyst 23a afforded the 1,3-dipolar cycloaddition product 34 in good yield and with 30-40% ee (Scheme 6.26). [Pg.231]

The transition metal-catalyzed reaction of diazoalkanes with acceptor-substituted alkenes is far more intricate than reaction with simple alkenes. With acceptor-substituted alkenes the diazoalkane can undergo (transition metal-catalyzed) 1,3-dipolar cycloaddition to the olefin [651-654]. The resulting 3//-pyrazolines can either be stable or can isomerize to l//-pyrazolines. 3//-Pyrazolines can also eliminate nitrogen and collapse to cyclopropanes, even at low temperatures. Despite these potential side-reactions, several examples of catalyzed cyclopropanations of acceptor-substituted alkenes with diazoalkanes have been reported [648,655]. Substituted 2-cyclohexenones or cinnamates [642,656] have been cyclopropanated in excellent yields by treatment with diazomethane/palladium(II) acetate. Maleates, fumarates, or acrylates [642,657], on the other hand, cannot, however, be cyclopropanated under these conditions. [Pg.115]

The 1,3-dipolar cycloaddition reaction of diazoalkanes with alkenes has also been reported (395). Kanemasa and Kanai (395) used the chiral DBFOX-Ph ligand with various metals such as Ni, Zn, and Mg for the preparation of 255a-c. The reaction of TMS-diazomethane 171 with alkene 241 was catalyzed by 10 mol% of 255b to afford the 1,3-dipolar cycloaddition product 296 in good yields and enantioselectivities of up to 99% ee (Scheme 12.96). Also, the Ni-catalyst 255a and the Mg-catalyst 255c were excellent catalysts for the reaction, resulting in >90% ee in both cases. [Pg.888]

A practicable strategy to provide access to chiral pyrazolidine-3-carboxylic acid (16) makes use of asymmetric dipolar cycloaddition of diazoalkanes to u,p-unsaturated carboxylic acid derivatives. For this purpose a chiral auxiliary of the alkene component is used, e.g. Op-polzer s1166 1671 (lf )-2,10-camphorsultam.t164l As shown in Scheme 7, by reaction of (tri-methylsilyl)diazomethane (41) with /V-( aery I oy I )cam p h ors u 11 am (42), the AL(4,5-dihy-dropyrazoline-5-carbonyl)camphorsultam (43) is obtained. Reduction of 44 with sodium cyanoborohydride leads to A-(pyrazolidine-3-carbonyl)camphorsultam (45) as the 35-dia-stereoisomer (ee 9 1) in 65 to 80% yields.[164] The camphorsultam 45 is then converted into the methyl ester 46 by reaction with magnesium methylate without racemizationj1641... [Pg.71]

Table 1 Thermal Reactions of Diazoalkanes with Alkenes... [Pg.955]

Although it has been established that the HOMO (diazoalkane)-LUMO (alkene) controlled concerted cycloaddition occurs without intervention of any intermediate for the reactions of simple diazoalkanes with alkenes, Huisgen once proposed a mechanistic alternative 4 namely an initial hypothetical nitrene-type 1,1-cycloaddition reaction of phenyldiazomethane to styrene followed by a vinylcyclopropane-cy-clopentene-type 1,3-sigmatropic rearrangement Control experiments, however, excluded this hypothesis for the bimolecular 1,3-dipolar cycloaddition reaction of diazomethane (Scheme 60).204... [Pg.1103]

Polymer-supported benzenesulfonyl azides have been developed as a safe diazotransfer reagent. ° These compounds, including CH2N2 and other diazoalkanes, react with metals or metal salts (copper, paUadium, and rhodium are most commonly used) to give the carbene complexes that add CRR to double bonds. Diazoketones and diazoesters with alkenes to give the cyclopropane derivative, usually with a transition-metal catalyst, such as a copper complex. The ruthenium catalyst reaction of diazoesters with an alkyne give a cyclopropene. An X-ray structure of an osmium catalyst intermediate has been determined. Electron-rich alkenes react faster than simple alkenes. ... [Pg.1237]

The high nucleophilicity of a-selenoalkyllithiums towards carbonyl conqiounds, even those that are the most hindered or enolizable, such as 2,2,6-trimethyl- and 2,2,6,6-tetramethyl-cyclohexanone (Schemes 113 and 164), di-t-butyl ketone, pennethylcyclobutanone, peimethylcyclopenta-none (Schemes 113 and 187) °- and deoxybenzoin (Schemes 115, 116 and i65y 4 49 23 iqws the synthesis of related alkenes, epoxides and rearranged ketones which are not available from the same carbonyl compounds on reaction with phosphorus or sulfur ylides - or diazoalkanes. ... [Pg.722]

New evidence as to the nature of the intermediates in catalytic diazoalkane decomposition comes from a comparison of olefin cyclopropanation with the electrophilic metal carbene complex (CO)jW—CHPh on one hand and Rh COAc) / NjCHCOOEt or Rh2(OAc)4 /NjCHPh on the other . For the same set of monosubstituted alkenes, a linear log-log relationship between the relative reactivities for the stoichiometric reaction with (CO)5W=CHPh and the catalytic reaction with RhjfOAc) was found (reactivity difference of 2.2 10 in the former case and 14 in the latter). No such correlation holds for di- and trisubstituted olefins, which has been attributed to steric and/or electronic differences in olefin interaction with the reactive electrophile . A linear relationship was also found between the relative reactivities of (CO)jW=CHPh and Rh2(OAc) NjCHPh. These results lead to the conclusion that the intermediates in the Rh(II)-catalyzed reaction are very similar to stable electrophilic carbenes in terms of electron demand. As far as cisjtrans stereoselectivity of cyclopropanation is concerned, no obvious relationship between Rh2(OAc) /N2CHCOOEt and Rh2(OAc),/N2CHPh was found, but the log-log plot displays an excellent linear relationship between (CO)jW=CHPh and Rh2(OAc) / N2CHPh, including mono-, 1,1-di-, 1,2-di- and trisubstituted alkenes In the phenyl-carbene transfer reactions, cis- syn-) cyclopropanes are formed preferentially, whereas trans- anti-) cyclopropanes dominate when the diazoester is involved. [Pg.238]

The reactions of diazoalkanes 9.21 with alkenes lead to pyrazolines 9.22, which are thermally transformed into cyclopropanes. Similar transformations occur during thermal reactions of diazoesters. The use of diazoesters of chiral alcohols did not give useful results, so chiral residues have been introduced on the olefin dipolarophile. Meyers and coworkers [327] carried out the reaction of diazomethane 9.21 (R = R = H) and diazopropane 9.21 (R = R = Me) with chiral lactams 1.92 (R = i-Pr or ferf-Bu, R = Me). These 1,3-dipolar cycloadditions are regioselective, but only CH2N2 leads to an interesting stereoselectivity (Figure 9.9). Morever, when the RM substituent of lactam 1.92 is H, the reaction is no longer stereoselective. [Pg.526]


See other pages where Diazoalkanes, reaction with alkenes is mentioned: [Pg.11]    [Pg.494]    [Pg.110]    [Pg.213]    [Pg.237]    [Pg.240]    [Pg.658]    [Pg.659]    [Pg.954]    [Pg.110]    [Pg.243]    [Pg.247]    [Pg.658]    [Pg.659]    [Pg.804]    [Pg.27]    [Pg.722]    [Pg.1063]    [Pg.1800]    [Pg.323]    [Pg.324]    [Pg.328]    [Pg.110]    [Pg.64]    [Pg.1006]   


SEARCH



Diazoalkanes alkenes

Diazoalkanes reaction

Reaction with alkenes

Reaction with diazoalkanes

© 2024 chempedia.info