Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diazoalkanes, reaction with decomposition

The q1-coordinated carbene complexes 421 (R = Ph)411 and 422412) are rather stable thermally. As metal-free product of thermal decomposition [421 (R = Ph) 110 °C, 422 PPh3, 105 °C], one finds the formal carbene dimer, tetraphenylethylene, in both cases. Carbene transfer from 422 onto 1,1-diphenylethylene does not occur, however. Among all isolated carbene complexes, 422 may be considered the only connecting link between stoichiometric diazoalkane reactions and catalytic decomposition [except for the somewhat different results with rhodium(III) porphyrins, see above] 422 is obtained from diazodiphenylmethane and [Rh(CO)2Cl]2, which is also known to be an efficient catalyst for cyclopropanation and S-ylide formation with diazoesters 66). [Pg.240]

Whereas base-induced decomposition of N-nitrosourethanes has been utilized (9) as a popular method of generating diazoalkanes, only limited investigations on base treatments of nitrosamides have been reported (10). The primary product in the base treatment is assumed, in analogy to better investigate nitrosourethane cases, to be diazo hydroxides V via attack of a base on the carbonyl group as in IV. A diazo hydroxide V has been related to the diazo ester III by a reaction with benzoyl chloride. [Pg.14]

A rather different approach has been made by Kirmse and Rinkler (1962) who used the base-catalysed decomposition of nitrosoalkylureas as a source of aliphatic diazoalkanes. Because the reaction could be carried out at room temperature and below, it was possible to study the behaviour of diazoalkanes in methanol as solvent, thereby allowing straightforward analysis of the products of the reaction with the solvent... [Pg.388]

Condensation with carbonyl compounds. Formation of epoxides from aldehydes by reaction with sulfonium ylides is subject to asymmetric induction. The latter species have been generated from 91, 92, and 93, and also those derived from monoterpenes, e.g., 94 " and 95.- Of course the ylides can be obtained in situ by deprotonation of sulfonium salts or copper-catalyzed decomposition of diazoalkanes (with the carbenoids trapped by the sulfides). [Pg.94]

The first step in the decomposition of nitrosoamides 123) is formation of the diazo ester 125) which fragments to a diazonium ion pair (128)129 The ion pairs thus produced differ from those obtained in the reaction of diazoalkanes with acids. The ratio of ester to ether formed in the decomposition of rV-nitroso-fV-benzhydrylbenz-amides in alcohol is lower than that found in the reaction of diphenyldiazomethane 132) with acids, and in the solvolysis of benzhydryl benzoate (I35)135,136 This effect has been attributed to the intervention of trans-diazo ester in the decomposition of 125) which leads to a greater distance between carbocation and carbox-ylate anion. In the diazoalkane reaction attack of the acid occurs at the electron-rich carbon atom to generate the carboxylate in the immediate vicinity of the incipient carbocation. [Pg.164]

New evidence as to the nature of the intermediates in catalytic diazoalkane decomposition comes from a comparison of olefin cyclopropanation with the electrophilic metal carbene complex (CO)jW—CHPh on one hand and Rh COAc) / NjCHCOOEt or Rh2(OAc)4 /NjCHPh on the other . For the same set of monosubstituted alkenes, a linear log-log relationship between the relative reactivities for the stoichiometric reaction with (CO)5W=CHPh and the catalytic reaction with RhjfOAc) was found (reactivity difference of 2.2 10 in the former case and 14 in the latter). No such correlation holds for di- and trisubstituted olefins, which has been attributed to steric and/or electronic differences in olefin interaction with the reactive electrophile . A linear relationship was also found between the relative reactivities of (CO)jW=CHPh and Rh2(OAc) NjCHPh. These results lead to the conclusion that the intermediates in the Rh(II)-catalyzed reaction are very similar to stable electrophilic carbenes in terms of electron demand. As far as cisjtrans stereoselectivity of cyclopropanation is concerned, no obvious relationship between Rh2(OAc) /N2CHCOOEt and Rh2(OAc),/N2CHPh was found, but the log-log plot displays an excellent linear relationship between (CO)jW=CHPh and Rh2(OAc) / N2CHPh, including mono-, 1,1-di-, 1,2-di- and trisubstituted alkenes In the phenyl-carbene transfer reactions, cis- syn-) cyclopropanes are formed preferentially, whereas trans- anti-) cyclopropanes dominate when the diazoester is involved. [Pg.238]

Besides Cu and Rh, various other metals are known to catalyze the decomposition of diazo compounds [6,7,8,9,10]. Palladium complexes, e.g., are efficient catalysts for the cyclopropanation of electron-deficient C-C double bonds with diazoalkanes [19,20, 21], in contrast to Cu and Rh catalysts which are better suited for reactions with electron-rich olefins. Unfortunately, attempts to develop chiral Pd catalysts for enantioselective cyclopropanation have not been successful so far [22]. More promising results have been obtained with cobalt and ruthenium complexes. These and other chiral metal catalysts, that have been studied besides Cu and Rh complexes, are discussed in chap. 16.3. The same chapter also covers a new direction of research that has recently been taken with the development of catalytic enantioselective Simmons-Smith reactions. [Pg.491]

Carbenes from Diazo Compounds. Decomposition of diazo compounds to form carbenes is a quite general reaction that is applicable to diazomethane and other diazoalkanes, diazoalkenes, and diazo compounds with aryl and acyl substituents. The main restrictions on this method are the limitations on synthesis and limited stability of the diazo compounds. The smaller diazoalkanes are toxic and potentially explosive, and they are usually prepared immediately before use. The most general synthetic routes involve base-catalyzed decomposition of V-nitroso derivatives of amides, ureas, or sulfonamides, as illustrated by several reactions used for the preparation of diazomethane. [Pg.909]

Reaction of diazo compounds with a variety of transition metal compounds leads to evolution of nitrogen and formation of products of the same general type as those formed by thermal and photochemical decomposition of diazoalkanes. These transition... [Pg.912]

It has been known for a long time that the decomposition of diazoalkanes can be catalyzed by transition metal complexes [493-496]. Carbene complexes were proposed as possible intermediates by Yates in 1952 [497]. However, because reactions of diazoalkanes with metal complexes tend to be difficult to control, it was not until 1975 [498] that stable carbene complexes could be directly obtained from diazoalkanes (Figure 3.19). [Pg.90]

The normal byproducts formed during the transition metal-catalyzed decomposition of diazoalkanes are carbene dimers and azines [496,1023,1329], These products result from the reaction of carbene complexes with the carbene precursor. Their formation can be suppressed by slow addition (e.g. with a syringe motor) of a dilute solution of the diazo compound to the mixture of substrate and catalyst. Carbene dimerization can, however, also be a synthetically useful process. If, e.g., diazoacetone is treated with 0.1% RuClCpIPPhjij at 65 °C in toluene, cw-3-hexene-2,5-dione is obtained in 81% yield with high stereoselectivity [1038]. [Pg.232]

The other example to be discussed in this context comes from Pettit s group. Simultaneous treatment of the iron complex (/u.-CH2)[Fe(CO)4]2 (35) with hydrogen and ethylene gives both methane (66%) and propylene (6%), the expected products from the two separate reactions. In addition, ethane (—600%) is formed, with the actual hydrogenation catalyst still to be determined (72). Because simple diazoalkanes provide the cleanest method to metal-attached alkylidenes, and with the expectation that dissociative chemisorption of diazomethane to absorbed CH2 and free N2 would occur, the reactions of CH2N2 with and without H2 over various transition metals were examined in a careful study with regard to the product ratio (73). It was found, that gas-phase decomposition of the parent diazoalkane upon passage over active Ni, Pd, Fe, Co, Ru, or Cu-... [Pg.229]

The problem of distinguishing between carbenoid and carbonium ion mechanisms of decomposition of diazoalkanes in protic media arises also in interpreting the base-induced decomposition of tosylhydrazones. In the original procedure for this widely-used reaction (W. R. Bamford and Stevens, 1952), the tosylhydrazone of a carbonyl compound is treated with the sodium salt of ethylene glycol in refluxing glycol. A mixture of olefins and alkoxyethanol is produced (equation 6). Many... [Pg.172]


See other pages where Diazoalkanes, reaction with decomposition is mentioned: [Pg.240]    [Pg.659]    [Pg.240]    [Pg.659]    [Pg.599]    [Pg.320]    [Pg.494]    [Pg.162]    [Pg.1800]    [Pg.25]    [Pg.338]    [Pg.289]    [Pg.251]    [Pg.209]    [Pg.429]    [Pg.87]    [Pg.137]    [Pg.237]    [Pg.238]    [Pg.240]    [Pg.244]    [Pg.262]    [Pg.12]    [Pg.658]    [Pg.167]    [Pg.199]    [Pg.171]    [Pg.175]    [Pg.176]    [Pg.658]    [Pg.244]   
See also in sourсe #XX -- [ Pg.289 ]




SEARCH



Decomposition reactions

Diazoalkanes decomposition

Diazoalkanes reaction

Reaction with diazoalkanes

© 2024 chempedia.info