Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ibuprofen diazepam

Stuer et al. [46] evaluated the presence of the 25 most used pharmaceuticals in the primary health sector in Denmark (e.g., paracetamol, acetyl salicylic acid, diazepam, and ibuprofen). They compared PECs with experimental determinations and they conclude that measured concentrations were in general within a factor of 2-5 of PECs. Carballa et al. [45] also determined PECs for pharmaceuticals (17), musk fragrances (2) and hormones (2) in sewage sludge matrix. For that purpose they used three different approaches (1) extrapolation of the per capita use in Europe to the number of Spanish inhabitants for musk fragrances (2) annual prescription items multiplied by the average daily dose for pharmaceuticals and (3) excretion rates of different groups of population for hormones. They indicated that these PECs fitted with the measured values for half of them (carbamazepine, diazepam, ibuprofen, naproxen, diclofenac, sulfamethoxazole, roxithromycin, erythromycin, and 17a-ethiny I e strad iol). [Pg.37]

Clinical trials have shown that raloxifene, in combination with oral calcium supplementation, decreases the risk of vertebral fracture and promotes bone formation, albeit to a lesser extent than with estrogen. Raloxifene has been shown to have a beneficial effect on lipid profiles (11). Raloxifene should not be administered in combination with cholestyramine (decreased absorption), coumadin (prothrombin times and international normalized ratios must be monitored more closely), and those drugs that are highly protein bound, such as clofibrate, diazepam, ibuprofen, indomethacin, and naproxen. [Pg.1415]

The results showed that the compounds studied with more frequency in the aquatic environment, and of which, logically, there is more information, are the antibiotics, analgesics and anti-inflammatories (like diclofenac, ibuprofen, naproxen, acetylsalicylic acid, and paracetamol), as well as the p-blocker atenolol. In the category of antibiotics, several families are included, like the macrolides (erythromycin), the fluoroquinolones (ofloxacin and ciprofloxacin), sulfonamides (sulfamethoxazole), penicillins (amoxicillin), the metronidazol, and trimethoprim. Other therapeutic groups also widely studied and frequently found in the environmental waters are the lipid regulators (gemfibrozil and bezafibrat), antiepileptic carbamaze-pine, and antidepressants (diazepam, fluoxetine, paroxetine) (see Table 3). [Pg.213]

In order to determine more precisely the fate of pharmaceuticals during sludge treatment, different experiments have been conducted in controlled conditions. In continuous anaerobic reactors treating sludge spiked with pharmaceuticals, Carballa et al. [114] observed removals higher than 80% for naproxen, sulfamethoxazole, and roxithromycin, while 40% and 23% of ibuprofen and iopromide, respectively, were eliminated at both mesophilic (37°C) and thermophilic (55°C) temperatures. For diclofenac and diazepam, elimination of about 60% was observed in mesophilic conditions while in thermophilic conditions, 38% and 73% of these two compounds, respectively, were eliminated. In these experiments, the sludge retention time (15 or 30 days) did not seem to influence pharmaceutical removal... [Pg.101]

Albumin has two binding sites Site I binds structurally unrelated substances (e.g., warfarin, phenytoin, and sulfonamides), and Site II, which is more selective, binds a smaller number of drugs (i.e., diazepam, phenylbutazone, and ibuprofen). [Pg.10]

Clofibric acid, bezafibrate Diclofenac, ibuprofen, naproxen Metoprolol, propanolol, betaxolol Terbutalin, salbutamol Diazepam... [Pg.336]

Figure 6.17 The classification of 42 drugs in the (solubility-dose ratio, apparent permeability) plane of the QBCS. The intersection of the dashed lines drawn at the cutoff points form the region of the borderline drugs. Key 1 acetyl salicylic acid 2 atenolol 3 caffeine 4 carbamazepine 5 chlorpheniramine 6 chlorothiazide 7 cimetidine 8 clonidine 9 corticosterone 10 desipramine 11 dexamethasone 12 diazepam 13 digoxin 14 diltiazem 15 disopyramide 16 furosemide 17 gancidovir 18 glycine 19 grizeofulvin 20 hydrochlorothiazide 21 hydrocortisone 22 ibuprofen 23 indomethacine 24 ketoprofen 25 mannitol 26 metoprolol 27 naproxen 28 panadiplon 29 phenytoin 30 piroxicam 31 propanolol 32 quinidine 33 ranitidine 34 salicylic acid 35 saquinavir 36 scopolamine 37 sulfasalazine 38 sulpiride 39 testosterone 40 theophylline 41 verapamil HC1 42 zidovudine. Figure 6.17 The classification of 42 drugs in the (solubility-dose ratio, apparent permeability) plane of the QBCS. The intersection of the dashed lines drawn at the cutoff points form the region of the borderline drugs. Key 1 acetyl salicylic acid 2 atenolol 3 caffeine 4 carbamazepine 5 chlorpheniramine 6 chlorothiazide 7 cimetidine 8 clonidine 9 corticosterone 10 desipramine 11 dexamethasone 12 diazepam 13 digoxin 14 diltiazem 15 disopyramide 16 furosemide 17 gancidovir 18 glycine 19 grizeofulvin 20 hydrochlorothiazide 21 hydrocortisone 22 ibuprofen 23 indomethacine 24 ketoprofen 25 mannitol 26 metoprolol 27 naproxen 28 panadiplon 29 phenytoin 30 piroxicam 31 propanolol 32 quinidine 33 ranitidine 34 salicylic acid 35 saquinavir 36 scopolamine 37 sulfasalazine 38 sulpiride 39 testosterone 40 theophylline 41 verapamil HC1 42 zidovudine.
A 23-year-old military officer on active duty took diazepam 5 mg tds and ibuprofen for back spasms. Three days later he was found sitting in a church, having assumed a previous role from his past life. He identified the date as 14 months before and his memory before that time was intact. However, he had no memory of events during the previous 14 months. There were no symptoms suggesting a schizophrenic disorder and his mental function was normal. His symptoms resolved within 24 hours of withdrawal of diazepam, except for amnesia of the event. He assumed his correct identity and was aware of the correct date. He had taken ibuprofen in the past with no adverse effects and this was his first exposure to a benzodiazepine. No other medications were involved and a full medical review found no cause for his symptoms other than diazepam use. [Pg.407]

Bapuji AT, Rambhau D, Srinivasu P, Rao BR, Apte SS. Time dependent influence of diazepam on the pharmacokinetics of ibuprofen in man. Drug Metabol Drug Interact 1999 15(1) 71-81. [Pg.412]

Ceftriaxone (A) Clindamycin (A) Clofibrate (A) Dexamethasone (N) Diazepam (B) Diazoxide (A) Dicloxacillin (N) Digitoxin (N) Etoposide (N) Ibuprofen (A) Indomethacin (A) Nafcillin (A) Naproxen (A) Oxacillin (A) Phenylbutazone (A) Phenytoin (A) Probenecid (A) Salicylic acid (A) Sulfisoxazole (A) Teniposide (N) Thiopental (A) Tolbutamide (A) Valproic acid (A) Warfarin (A)... [Pg.3031]

A 37-year-old man with a history of ethanol abuse presented with hepatic failure and non-cardiogenic pulmonary edema after an overdose of paracetamol, codeine, ibuprofen, and diazepam. He received two... [Pg.3681]

Solubilisation by surface-active agents is discussed in Chapter 6. Alternatives to micellar solubilisation (or solubilisation in vesicles) include the use of the cyclodextrin family. When the first edition of this book was published in 1981 (and a diagram of a cyclo-dextrin-dmg complex was used to adorn the cover), the use of cyclodextrins was in its infancy. Attention was then focused around a-, P- and yavailable commercially for pharmaceutical use. Ten per cent of this cyclodextrin can enhance the solubility of betamethasone 118 times, of diazepam 21 times and of ibuprofen 55 times. [Pg.158]

Also analyzed acebutolol, acepromazine, acetaminophen, acetazolamide, acetophenazine, albuterol, amitriptyline, amobarbital, amoxapine, antipsrrine, atenolol, atropine, azata-dine, baclofen, benzocaine, bromocriptine, brompheniramine, brotizolam, bupivacaine, buspirone, butabarbital, butalbital, caffeine, carbamazepine, cetirizine, chlorqyclizine, chlordiazepoxide, chlormezanone, chloroquine, chlorpheniramine, chlorpromazine, chlorpropamide, chlorprothixene, chlorthalidone, chlorzoxazone, cimetidine, cisapride, clomipramine, clonazepam, clonidine, clozapine, cocaine, codeine, colchicine, qyclizine, (yclo-benzaprine, dantrolene, desipramine, diazepam, diclofenac, diflunisal, diltiazem, diphenhydramine, diphenidol, dipheno late, dipyridamole, disopyramide, dobutamine, doxapram, doxepin, droperidol, encainide, ethidium bromide, ethopropazine, fenoprofen, fentanyl, flavoxate, fluoxetine, fluphenazine, flurazepam, flurbiprofen, fluvoxamine, fii-rosemide, glutethimide, glyburide, guaifenesin, haloperidol, homatropine, hydralazine, hydrochlorothiazide, hydrocodone, hydromorphone, hydro g chloroquine, hydroxyzine, ibuprofen, imipramine, indomethacin, ketoconazole, ketoprofen, ketorolac, labetalol, le-vorphanol, lidocaine, loratadine, lorazepam, lovastatin, loxapine, mazindol, mefenamic acid, meperidine, mephenytoin, mepivacaine, mesoridazine, metaproterenol, methadone, methdilazine, methocarbamol, methotrexate, methotrimeprazine, methoxamine, methyl-dopa, methylphenidate, metoclopramide, metolazone, metoprolol, metronidazole, midazolam, moclobemide, morphine, nadolol, nalbuphine, naloxone, naphazoline, naproxen, nifedipine, nizatidine, norepinephrine, nortriptyline, oxazepam, oxycodone, oxymetazo-line, paroxetine, pemoline, pentazocine, pentobarbital, pentoxifylline, perphenazine, pheniramine, phenobarbital, phenol, phenolphthalein, phentolamine, phenylbutazone, phenyltoloxamine, phenytoin, pimozide, pindolol, piroxicam, pramoxine, prazepam, prazosin, probenecid, procainamide, procaine, prochlorperazine, procyclidine, promazine, promethazine, propafenone, propantheline, propiomazine, propofol, propranolol, protriptyline, quazepam, quinidine, quinine, racemethorphan, ranitidine, remoxipride, risperidone, salicylic acid, scopolamine, secobarbital, sertraline, sotalol, spironolactone, sulfinpyrazone, sulindac, temazepam, terbutaline, terfenadine, tetracaine, theophylline, thiethyl-perazine, thiopental, thioridazine, thiothixene, timolol, tocainide, tolbutamide, tolmetin, trazodone, triamterene, triazolam, trifluoperazine, triflupromazine, trimeprazine, trimethoprim, trimipramine, verapamil, warfarin, xylometazoline, yohimbine, zopiclone... [Pg.53]

Simultaneous chlorpheniramine, diazepam, diltiazem, flurbiprofen, ibuprofen, itraconazole, ketoprofen, mebeverine, metoclopramide, phenylbutazone... [Pg.59]


See other pages where Ibuprofen diazepam is mentioned: [Pg.164]    [Pg.152]    [Pg.194]    [Pg.164]    [Pg.152]    [Pg.194]    [Pg.89]    [Pg.195]    [Pg.53]    [Pg.104]    [Pg.454]    [Pg.192]    [Pg.519]    [Pg.410]    [Pg.1106]    [Pg.2356]    [Pg.30]    [Pg.103]    [Pg.39]    [Pg.477]    [Pg.8]    [Pg.17]    [Pg.21]    [Pg.22]    [Pg.24]    [Pg.35]    [Pg.43]    [Pg.48]    [Pg.54]    [Pg.62]   
See also in sourсe #XX -- [ Pg.410 ]

See also in sourсe #XX -- [ Pg.733 ]




SEARCH



Ibuprofen

© 2024 chempedia.info