Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diatomaceous earth preparation

Diatomaceous earth prepared as follows Wash diatomaceous earth with hot 6N hydrochloric acid until washings contain no calcium or iron. Wash with water to neutral pH and dry at 105 C. Triturate a slurry of 8 g of acid-washed diatomaceous earth and 16 ml buffer (5 ml of 20% (v/v) PEG 400 in glycerin with 95 ml of 0.1 A/ ethyl-enediaminetetraacetic acid (EDTA) previously adjusted to pH 7.0 with ammonium hydroxide). Pour plates, air dry for 35-50 min and use immediately Solvent... [Pg.373]

Granulars are pelleted mixtures of toxicant, usually at 2.5 ndash 10%, and a dust carrier, eg, absorptive clay, bentonite, or diatomaceous earth, and commonly are 250 ndash 590 ]lni in particle size. They are prepared by impregnation of the carrier with a solution or slurry of the toxicant and are used principally for mosquito larviciding and soil appHcations. [Pg.301]

The active phase, which is soHd at room temperature, is comprised of mixed potassium and sodium vanadates and pyrosulfates, whereas the support is macroporous siUca, usually in the form of 6—12 mm diameter rings or pellets. The patent Hterature describes a number of ways to prepare the catalyst a typical example contains 7 wt % vanadium pentoxide, 8% potassium added as potassium hydroxide or carbonate, 1% sodium, and 78 wt % siUca, added as diatomaceous earth or siUca gel, formed into rings, and calcined in the presence of sulfur dioxide or sulfur trioxide to convert a portion of the alkah metal salts into various pyrosulfates (81,82). [Pg.203]

Filter aids should have low bulk density to minimize settling and aid good distribution on a filter-medium surface that may not be horizontal. They should also be porous and capable of forming a porous cake to minimize flow resistance, and they must be chemically inert to the filtrate. These characteristics are all found in the two most popular commercial filter aids diatomaceous silica (also called diatomite, or diatomaceous earth), which is an almost pure silica prepared from deposits of diatom skeletons and expanded perhte, particles of puffed lava that are principally aluminum alkali siheate. Cellulosic fibers (ground wood pulp) are sometimes used when siliceous materials cannot be used but are much more compressible. The use of other less effective aids (e.g., carbon and gypsum) may be justified in special cases. Sometimes a combination or carbon and diatomaceous silica permits adsorption in addition to filter-aid performance. Various other materials, such as salt, fine sand, starch, and precipitated calcium carbonate, are employed in specific industries where they represent either waste material or inexpensive alternatives to conventional filter aids. [Pg.1708]

Graded Adsorbents and Solvents. Materials used in columns for adsorption chromatography are grouped in Table 12 in an approximate order of effectiveness. Other adsorbents sometimes used include barium carbonate, calcium sulfate, calcium phosphate, charcoal (usually mixed with Kieselguhr or other form of diatomaceous earth, for example, the filter aid Celite) and cellulose. The alumina can be prepared in several grades of activity (see below). [Pg.19]

Charcoal is generally satisfactorily activated by heating gently to red heat in a crucible or quartz beaker in a muffle furnace, finally allowing to cool under an inert atmosphere in a desiccator. Good commercial activated charcoal is made from wood, e.g. Norit (from Birch wood), Darco and Nuchar. If the cost is important then the cheaper animal charcoal (bone charcoal) can be used. However, this charcoal contains calcium phosphate and other calcium salts and cannot be used with acidic materials. In this case the charcoal is boiled with dilute hydrochloric acid (1 1 by volume) for 2-3h, diluted with distilled water and filtered through a fine grade paper on a Buchner flask, washed with distilled water until the filtrate is almost neutral, and dried first in air then in a vacuum, and activated as above. To improve the porosity, charcoal columns are usually prepared in admixture with diatomaceous earth. [Pg.20]

A solution of N-(2-aminobenzvl)-1-phenyl-2-metKylaminoethanol-1 was prepared by the reaction of a-bromo-acetophenone and (2-nitrobenzyl)methylamine, followed by hydrogenation of the nitro group by means of nickei on diatomaceous earth at room temperature and reduction of the CO group by means of sodium borohydride. The intermediate thus produced was dissolved in 100 ml of methylene chloride and introduced dropwise into 125 ml of sulfuric acid at 10° to 15°C. After a short standing, the reaction mixture was poured onto ice and rendered alkaline by means of a sodium hydroxide solution. Dy extraction with ether, there was obtained 1,2,3,4-tetrahydro-2-methyl-4-phenyl-8-amino-iso-quinoline. The base is reacted with maleic acid to give the maleate melting point of the maleate 199° to 201°C (from ethanol). [Pg.1091]

Alternative Step D Reduction with a Reductate — Sucrose (1 kg) is dissolved in water (9 liters) in a 20-liter bottle equipped with a gas trap. Baker s yeast Saccharomyces cerevisiae, 1 kg) is made into a paste with water (1 liter) and added to the sucrose solution with stirring. After lively evolution of gas begins (within 1 to 3 hours), 3-morpholino-4-(3-tert-butylamino-2-oxopropoxy)-1,2,5-thiadiazole hydrogen maleate [1.35 mols, prepared by reaction of the 3-morpholino-4-(3-tert-butylamino-2-oxopropoxy)-1,2,5-thiadiazole with an equimolar quantity of maleic acid in tetrahydrofuran]. The mixture is allowed to stand until fermentation subsides, after which the bottle is kept in a 32°C incubator until all fermentation has ended (in approximately 1 to 3 days). The yeast is filtered off with addition of diatomaceous earth and the filtrate is evaporated to dryness to give S-3-mor-pholino-4/3-tert-butylamino-2-hydroxypropoxy)-1,2,5-thiadiazole, MP 195° to 198°C (as hydrogen maleate), according to U.S. Patent 3,619,370. [Pg.1490]

A very helpful tool for manual application can be the employment of layers with a concentrating zone. The so-called concentrating or preadsorbent zone is a small part of the plate that is covered with an inert but highly porous adsorbent such as diatomaceous earth. Various precoated preparative layers with a preadsorbent zone are commercially available. The effect of the concentrating zone is depicted elsewhere in detail (see Chapter 3, Figure 3.4). In brief, the preadsorbent zone serves as a platform for manual application of any desired performance quality. When development starts, soluble components migrate with the mobile phase front and are... [Pg.105]

SFE usually requires pre-extraction manipulation in the form of cryogenic grinding, except in cases where analytes are sorbed only on the surface or outer particle periphery. The optimum particle diameter is about 10-50 p,m. Diatomaceous earth is used extensively in SFE sample preparation procedures. This solid support helps to disperse the sample evenly, allowing the SCF to solvate the analytes of interest efficiently and without interference from moisture. [Pg.90]

A pivotal step in the analytical process is sample preparation. Frequently liquid-liquid extractions (LLEs) are used. Solvents, pH, and multiple back extractions are all manipulated to increase selectivity and decrease unwanted contaminants before injection on the GC system. Solid phase extraction (SPE) is more convenient than it used to be because of an increase in commercially available SPE columns. SPE columns are packed with an inert material that binds the drug of interest, allowing impurities to pass through. As with LEE, solvent choices and pH affect retention and recovery. There are three commercially available types of SPE columns, diatomaceous earth (which uses the same principles as LLE), polystyrene-divinylbenzene copolymer, and mixed mode bonded silica (Franke and de Zeeuw, 1998). [Pg.7]

Activation of charcoal is generally achieved satisfactorily by heating gently to red heat in a crucible or quartz beaker in a muffle furnace, finally allowing to cool under an inert atmosphere in a desiccator. To improve the porosity, charcoal columns are usually prepared in admixture with diatomaceous earth. [Pg.18]

Two types of columns are used. A packed column is one filled with inert, solid particles coated with a liquid stationary phase. Standard tubing is about 0.5 cm in diameter, with lengths ranging from 1 m to 20 m however, columns for large-scale preparative work may be up to 5 cm in diameter and several meters long. Commonly used solid supports are diatomaceous earth, Teflon powder, and glass beads. The stationary liquid must be chosen on the basis of the compounds to be analyzed. A more recently developed and more widely used type of column is the open-tubular or capillary column. This is prepared by coating the inner wall of the column with the stationary liquid phase. The inside diameter of a typical capillary tube is 0.25 mm, and... [Pg.65]


See other pages where Diatomaceous earth preparation is mentioned: [Pg.583]    [Pg.583]    [Pg.573]    [Pg.149]    [Pg.220]    [Pg.52]    [Pg.162]    [Pg.410]    [Pg.405]    [Pg.128]    [Pg.1168]    [Pg.1525]    [Pg.1528]    [Pg.178]    [Pg.84]    [Pg.583]    [Pg.35]    [Pg.159]    [Pg.127]    [Pg.324]    [Pg.312]    [Pg.343]    [Pg.5]    [Pg.174]    [Pg.316]    [Pg.52]    [Pg.405]    [Pg.134]    [Pg.213]    [Pg.159]    [Pg.257]    [Pg.74]    [Pg.478]   
See also in sourсe #XX -- [ Pg.20 ]




SEARCH



© 2024 chempedia.info