Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymeric dialkyl peroxides

Because high temperatures are required to decompose diaLkyl peroxides at useful rates, P-scission of the resulting alkoxy radicals is more rapid and more extensive than for most other peroxide types. When methyl radicals are produced from alkoxy radicals, the diaLkyl peroxide precursors are very good initiators for cross-linking, grafting, and degradation reactions. When higher alkyl radicals such as ethyl radicals are produced, the diaLkyl peroxides are useful in vinyl monomer polymerizations. [Pg.226]

Dialkyl peroxides have the stmctural formula R—OO—R/ where R and R are the same or different primary, secondary, or tertiary alkyl, cycloalkyl, and aralkyl hydrocarbon or hetero-substituted hydrocarbon radicals. Organomineral peroxides have the formulas R Q(OOR) and R QOOQR, where at least one of the peroxygens is bonded directly to the organo-substituted metal or metalloid, Q. Dialkyl peroxides include cyclic and bicycflc peroxides where the R and R groups are linked, eg, endoperoxides and derivatives of 1,2-dioxane. Also included are polymeric peroxides, which usually are called poly(alkylene peroxides) or alkylene—oxygen copolymers, and poly(organomineral peroxides) (44), where Q = As or Sb. [Pg.105]

Many types of peroxides (R-O-O-R) are known. Those in common use as initiators include diacyl peroxides (36), pcroxydicarbonatcs (37), peroxyesters (38), dialkyl peroxides (39), hydroperoxides (40), and inorganic peroxides [e.g. persulfate (41)1, Multifunctional and polymeric initiators with peroxide linkages are discussed in Sections 3.3.3 and 6.3.2.1. [Pg.79]

Methods for detecting whether peroxy compound have been used for cross-linking elastomers have been reviewed. An important application of dialkyl peroxides is as initiators of cross-linking and graft polymerization processes. The success of both processes depends on the ability of the peroxide to produce free radicals and the ability of the free radicals for H-abstraction from a relevant donor substrate. A method for evaluating this ability consists of inducing thermal decomposition of the peroxide dissolved in a mixture of cyclohexane and MSD (225). The free radical X" derived from the... [Pg.706]

Dialkyl peroxides (continued) colorimetry, 707-8 flame ionization detection, 708 NMR spectroscopy, 708 titration methods, 707 UV-visible spectrophotometry, 707-8 enthalpies of reactions, 153-4 graft polymerization initiation, 706 hydroperoxide determination, 685 peroxide transfer synthesis, 824-5 stmctural characterization, 708-16 electrochemical analysis, 715-16 electron diffraction, 713 mass spectrometry, 714 NMR spectroscopy, 709-11 thermal analysis, 714-15 vibrational spectra, 713-14 X-ray crystallography, 711-13 synthesis... [Pg.1454]

Radiation-induced decomposition, 5,6-dihydrothymine, 930 Radiation stress, polymers, 685 Radical polymerization dialkyl peroxides, 707 peroxycarboxylic esters, 697 Radicals... [Pg.1486]

Pure and commercial mixtures of 1-alkenes in the Ci5 to Ci8 range were studied at high temperatures and high conversion levels. The reaction variables were studied to make desired reproducible mixtures containing substantial concentrations of alkenyl hydroperoxides and polymeric dialkyl peroxides. [Pg.90]

Our laboratory oxidations were carried out by bubbling dry air at 80 to 125 cc. per minute STP, at 110°C. through 500 ml. of olefin in a round-bottomed, 1-liter, standard-taper, three-necked flask equipped with magnetic stirrer, Therm-O-watch controller, electric heating mantle, and condenser. Alkenyl hydroperoxide numbers [Method I of Mair and Graupner (11)] and polymeric dialkyl peroxide numbers (Method III minus Method I of Ref. 11) were determined on small aliquots of about 5 ml. withdrawn at various times. [Pg.95]

Results obtained in glass apparatus are summarized in Figure 1. The unsaturation falls off nearly linearly after a short induction period. After the hydroperoxide functional groups attain their maximum, the olefin disappearance decreases and becomes nonlinear as it is consumed by reaction to form polymeric dialkyl peroxide functions. The maximum concentration of polymeric dialkyl peroxide occurs well after the maximum alkenyl hydroperoxide concentration, giving the appearance of a sequential oxidation mechanism. Infrared and gas-liquid chromatographic analyses showed that hydroxylic derivatives, carbonyl derivatives, and lower molecular weight olefins continued to build up as by-products as the oxidation proceeded, as does the acidity titer. [Pg.100]

The experimental autoclave results are summarized in Table I and Figures 2 through 4. Autoclave product compositions are expressed in weight percent, assuming that one peroxide function per olefin unit is incorporated in the polymeric dialkyl peroxides (17, 19). [Pg.100]

The kinetic results are summarized in Table II. The autoxidation products in general are similar to those observed by Van Sickle at lower temperatures and conversions. Table III summarizes analyses made by Van Sickle at conditions approximating our levels of conversion and temperature. The polymeric dialkyl peroxides are included in the residue. [Pg.100]

The alkenyl hydroperoxides and polymeric dialkyl peroxides are fairly stable at ambient temperature but decompose appreciably at the reaction temperatures studied. Thermal stabilities of the alkenyl hydroperoxides and dialkyl peroxides in the olefin solution were determined by heating the solution at 110°C. under nitrogen. The peroxide numbers were plotted vs. time to estimate the half-lives in solution. The thermal decomposition half-lives of these alkenyl hydroperoxides are compared with values from the literature for acyclic and cyclic hydroperoxides in Table IV. Secondary acyclic alkenyl hydroperoxides appear to be less... [Pg.100]

The experimental activation energies given in the last column of Table II are in the anticipated order of magnitudes. The activation energy of 24.0 kcal. per mole for the oxidation of 1-hexadecene to hydroperoxide is close to the value of 25.3 kcal. per mole recently reported for the constant velocity of peroxide accumulation. .. for butene-1 (9). The activation energy for the alkenyl hydroperoxide decomposition is reasonable. The activation energy of 48.1 kcal. per mole for the decomposition polymeric dialkyl peroxide is considerably higher than the value of about 37 kcal. per mole for tert-butyl peroxide decomposition. The... [Pg.101]

It is generally agreed that alkenyl hydroperoxides are primary products in the liquid-phase oxidation of olefins. Kamneva and Panfilova (8) believe the dimeric and trimeric dialkyl peroxides they obtained from the oxidation of cyclohexene at 35° to 40° to be secondary products resulting from cyclohexene hydroperoxide. But Van Sickle and co-workers (20) report that, The abstraction/addition ratio is nearly independent of temperature in oxidation of isobutylene and cycloheptene and of solvent changes in oxidations of cyclopentene, tetramethylethylene, and cyclooctene. They interpret these results to support a branching mechanism which gives rise to alkenyl hydroperoxide and polymeric dialkyl peroxide, both as primary oxidation products. This interpretation has been well accepted (7, 13). Brill s (4) and our results show that acyclic alkenyl hydroperoxides decompose extensively at temperatures above 100°C. to complicate the reaction kinetics and mechanistic interpretations. A simplified reaction scheme is outlined below. [Pg.102]

At Van Sickle s conditions of low temperatures and low conversions, branching routes A and B appear to be dominant since there is little alkenyl hydroperoxide decomposition. In our work above 100°C., the branching routes are supported by the nearly linear initial portions at low conversions for alkenyl hydroperoxide and polymeric dialkyl peroxide curves (see Figures 2, 3, and 4). The polymeric dialkyl peroxides formed under our reaction conditions include those formed by the branching mechanism postulated by Van Sickle (routes A and B) and those formed by the reaction of the alkenoxy and hydroxy radicals from alkenyl hydroperoxide thermal decomposition reacting further and alternately with olefin and oxygen (step C). The importance and kinetic fit of the sequential route A to C appears to increase with temperature and extent of olefin conversion owing to the extensive thermal decomposition of the alkenyl hydroperoxides above 100°C. [Pg.103]

Free radicals should initiate polymerization efficiently. Some peroxides such as dialkyl peroxides and peresters tend to abstract hydrogen from the monomer more readily than they react to initiate polymerizations. Consequently, their efficiency as initiators is reduced. [Pg.28]

The most common chain reaction polymerization is free-radical polymerization. A free radical is merely a molecule with an unpaired electron, which has a tendency to add a supplementary electron in order to form an electron pair which makes it extremely reactive. These molecular complexes could be produced by heat or irradiation, or formed by the addition of a compound, named the initiator (I), for example, dialkyl peroxides (R compounds (R — N = N — R), which are not strictly, catalysts, since they are chemically altered during the reaction [196],... [Pg.130]

Dialkyl peroxides (1), R-O-O-R (R and R are = or primary, secondary, tertiary alkyl, cycloalkyl, aralkyl and heterocyclic radicals Homolytic decompn when heated or irradiated with prodn of free radicals for org synthesis difficult to hydrolyze and reduce rearrangement crosslinking and polymerization polymeric peroxides are thick liqs or amorph wh powds used as polymerization catalysts Primary radicals are unstable, lowest members such as dimet peroxide are shock sens and dangerous expls sensitivity lessens with increasing mw polymeric peroxides (copolymers of olefins and Oj) explode on heating... [Pg.680]

The initiator decomposes thermally to give the initiating radicals R - with an efficiency f. This is typically between 0.1 and 0.8, depending on the type of initiator and the viscosity of the polymerizing medium, since it is reduced by radical recombination. The initiators such as AIBN shown have a higher efficiency than, say, dialkyl peroxides, since they liberate nitrogen to produce two radicals that are more widely separated. The rate coefficient, k, will be described by an Arrhenius temperature dependence. [Pg.63]


See other pages where Polymeric dialkyl peroxides is mentioned: [Pg.223]    [Pg.108]    [Pg.47]    [Pg.600]    [Pg.653]    [Pg.165]    [Pg.685]    [Pg.90]    [Pg.95]    [Pg.96]    [Pg.101]    [Pg.102]    [Pg.102]    [Pg.102]    [Pg.102]    [Pg.685]    [Pg.160]    [Pg.1230]    [Pg.223]    [Pg.85]    [Pg.92]    [Pg.260]    [Pg.83]    [Pg.97]    [Pg.29]    [Pg.2382]   
See also in sourсe #XX -- [ Pg.78 ]




SEARCH



Dialkyl peroxides

Dialkyl peroxides graft polymerization initiation

Peroxide polymeric

Radical polymerization dialkyl peroxides

© 2024 chempedia.info