Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

108-20-3 Di-isopropyl ether

Some small amount of byproduct formation occurs. The principal byproduct is di-isopropyl ether. The reactor product is cooled, and a phase separation of the resulting vapor-liquid mixture produces a vapor containing predominantly propylene and propane and a liquid containing predominantly the other components. Unreacted propylene is recycled to the reactor, and a purge prevents the buildup of propane. The first distillation in Fig. 10.3a (column Cl) removes... [Pg.281]

Ethers. Diethyl ether, di-n-propyl ether, di-isopropyl ether, ani ... [Pg.318]

ISOPROPYL ETHER see DI-ISOPROPYL ETHER ISOPROPYL FORMATE 2408 625-55-8... [Pg.227]

Oxygen was added as oxygenated hydrocarbon components methyl tert-butyl ether (MTBE), tert-amyl methyl ether (TAME), ethyl tert-butyl ether (ETBE), di-isopropyl ether (DIPE), ethanol, methanol, and tertiary butyl alcohol (TBA). The properties of oxygenates, as they relate to gasoline blending, are shown in Table 10-1. [Pg.312]

A few results have been reported on the oxidation of cyclohexanol by acidic permanganate In the absence of added fluoride ions the reaction is first-order in both alcohol and oxidant , the apparent first-order rate coefficient (for excess alcohol) at 25 °C following an acidity dependence k = 3.5-1-16.0 [H30 ]sec fcg/A , depends on acidity (3.2 in dilute acid, 2.4 in 1 M acid) and D2o/ H20 is f-74. Addition of fluoride permitted observation of the reaction for longer periods (before precipitation) and under these conditions methanol is attacked at about the same rates as di-isopropyl ether, although dioxan is oxidised over twenty times more slowly. The lack of specificity and the isotope effect indicates that a hydride-ion abstraction mechanism operates under these conditions. (The reactivity of di-isopropyl ether towards two-equivalent oxidants is illustrated by its reaction with Hg(II).) Similar results were obtained with buffered permanganate. [Pg.309]

Two studies have been performed by Littler on the oxidation of cyclohexanol by Hg(II), the second leading to more detailed and reliable data. The reaction is first-order in both oxidant and substrate but the rate is independent of acidity. E is 24.8 kcal.mole AS is 1 eu, Ath/Acd is 3.0 and ko ol HzO 1-30-At 50 °C di-isopropyl ether is attacked at about one-half the rate of isopropanol, which implies that hydride ion abstraction is occurring in both cases. This is supported in the case of cyclohexanol by the isotope effects. [Pg.344]

The ready oxidation of di-isopropyl ether by Hg(II) perchlorate " is a good indication that this oxidant can function as a hydride-ion acceptor, viz. [Pg.348]

The remarkable inertness of dialkyl ethers to one-equivalent oxidants is good evidence that the readier oxidation of alcohols involves more than simple electron abstraction. Di-isopropyl ether is oxidised by Co(III) in CH3CN-H2O mixtures with complicated kinetics individual runs show first-order decay of Co(III) but the rate coefficients increase with increasing [Co(III)], and the order with respect to substrate is less than one but is neither fractional nor of a Michaelis-Menten type. The main product is acetone and the following reaction sequence is proposed... [Pg.383]

Figure 12.33 Separation of isopropyl alcohol (IPA) and water mixture using di-isopropyl ether (DIPE) as entrainer in heterogeneous azeotropic distillation. Figure 12.33 Separation of isopropyl alcohol (IPA) and water mixture using di-isopropyl ether (DIPE) as entrainer in heterogeneous azeotropic distillation.
Various organic extractants may be used, including butyl and amyl alcohols, di-isopropyl ether, tri-n-butyl phosphate, and tri-2-ethylhexyl phosphate. The fluoride remains with the... [Pg.121]

Oxypro (1) A process for making di-isopropyl ether (DOPE) from a propane/propylene stream from FCC. The catalyst system is superior to other acid catalysts such as zeolites because of its greater activity at low temperatures. The Oxypro catalyst functions at below 175°C, whereas zeolites require temperatures closer to 260°C. DOPE is used as a gasoline additive. Developed by UOP in 1994 first licensed in Chile in 1996 for completion in 1997. [Pg.201]

Phenolsolvan A process for extracting phenols from coke-oven liquor and tar acids from tar by selective solvent extraction with di-isopropyl ether (formerly with -butyl acetate). Developed by Luigi in 1937. [Pg.209]

Like ethyl alcohol, the absolute (99 %) grade is made by forming a ternary azeotrope. In this case, DIPE (di-isopropyl ether) is used to form the ternary with water and IPA. But the idea is exactly the same. [Pg.200]

Schugerl 115] has recently furnished a detail analysis of the reactive extraction of penicdlin-G and V and precursors like phenyl and phenoxy acetic acids. Thirty different amines have been studied for reactive extraction of penicillins 116] in various solvents such as butyl acetate, chloroform, di-isopropyl ether, kerosene, dioctyl ether, etc. Tertiary amines in n-butyl acetate were found to be advantageous because of their low reactivity with solvent but the distribution coefficients of their complexes are significantly lower than those of secondary amines. While using quaternary ammonium salts for ion-exchange extraction, re-extraction is difficult and very large amounts of anion (e.g.. Cl ) are needed to recover penicillins. The basic relationship for distribution coefficient and extraction kinetics have now been fairly developed for amine-penicillin systems. [Pg.217]

Regioselective alcoholysis of polyacylated steroids catalyzed by Candida rugosa lipase suspended in acetonitrile or di-isopropyl ether in the presence of octanol has also been reported [88]. Similarly, the alcoholysis of peracetylated chalcones, acetophenones, and benzopyranones has been reported [89]. [Pg.159]

After drying and delipidation this biomass can be considered as a naturally immobilized enzyme (Fig, 3.). The hydrolytic activity measured on olive oil in di-isopropyl-ether is around 75 to 200 micromoles per g of dry mycelium and per mn. The chain length specificity spectrum is broad, as shown before (from C14 to C22). [Pg.96]

Peroxides in ether solvents. This is one of the commonest causes of explosions in organic chemistry laboratories. Simple dialkyl ethers such as diethyl ether and di-isopropyl ether, and cyclic ethers such as 1,4-dioxane and tetrahydrofuran, form less volatile peroxides on exposure to air and light. If therefore one of these solvents is purified by distillation, the peroxide content in the residue is progressively increased and eventually a violent explosion may occur. In view of this (i) such solvents should not be stored for long periods or in half empty bottles containers should be of dark glass (ii) before the solvents are distilled a peroxide test should be carried out, and, if positive, the peroxide must be removed (Section 4.1.11, p. 402 and Section 4.1.75, p. 404) and (iii) since purified ethers in contact with air rapidly peroxidise again (10 minutes in the case of tetrahydrofuran) they should be retested for peroxides and purified if necessary immediately before use. [Pg.37]

The commercial product usually contains appreciable quantities of peroxide this should be removed by treatment with an acidified solution of an iron(n) salt or with a solution of sodium sulphite (see under 15. Diethyl ether). The diisopropyl ether is then dried over anhydrous calcium chloride and distilled, the fraction b.p. 68.5 °C/760 mmHg being collected. Di-isopropyl ether should be stored in brown bottles away from the light. A small amount of hydroquinone (2 x 10 5 m) may be added as a peroxide inhibitor. [Pg.406]

Containers of di-isopropyl ether that have been opened, or have been stored for more than 3 months, may contain hazardous quantities of peroxides. Especially if crystals are present, the container should be handled only by appropriate authorities such as a bomb squad. Where the container can be opened safely, check for peroxides as follows Wear butyl rubber gloves, laboratory coat, and eye protection. Work in the fume hood. Dissolve 100 mg of potassium iodide in 1 mL of glacial acetic acid. Add to 1 mL of diisopropyl ether. A pale yellow color indicates a low concentration (0.001-0.005%) and a bright yellow or brown color indicates a high concentration (above 0.01% and hazardous) of peroxide in the sample.11... [Pg.231]

Compared to other classes of organic compounds, ethers have relatively low toxicities. This characteristic can be attributed to the low reactivity of the C-O-C functional group arising from the high strength of the carbon-oxygen bond. Like diethyl ether, several of the more volatile ethers affect the central nervous system. Hazards other than their toxicities tend to be relatively more important for ethers. These hazards are flammability and formation of explosive peroxides (especially with di-isopropyl ether). [Pg.319]

Over a period of 15 min and whilst stirring 158.0 g of methyl N-isobutyl-N-nitroso-p-aspartate are added to 340 ml of acetic anhydride and then, drop by drop, 0.95 ml of 70% perchloric acid. The reaction mixture is then stirred for 2 h at room temperature. The acetic anhydride is evaporated under reduced pressure, and the residue is then successively dissolved once in 100 ml of chloroform, thrice in 100 ml of benzene each time and twice in 100 ml of diethyl ether each time, the solvent being evaporated each time under reduced pressure. 155.0 g of red oil are obtained which are dissolved in 2 volumes of hot di-isopropyl ether and cooled. After 1 min at 3°C the crystals which separate are filtered and there are thus obtained 78.0 g of methyl 3-isobutyl-4-sydnonyl acetate, melting point 39°C. [Pg.712]


See other pages where 108-20-3 Di-isopropyl ether is mentioned: [Pg.282]    [Pg.38]    [Pg.163]    [Pg.206]    [Pg.103]    [Pg.14]    [Pg.301]    [Pg.252]    [Pg.639]    [Pg.304]    [Pg.306]    [Pg.270]    [Pg.122]    [Pg.128]    [Pg.128]    [Pg.193]    [Pg.1203]    [Pg.376]    [Pg.80]    [Pg.40]    [Pg.156]    [Pg.406]    [Pg.230]    [Pg.319]   
See also in sourсe #XX -- [ Pg.2 , Pg.3 , Pg.230 ]

See also in sourсe #XX -- [ Pg.13 , Pg.18 ]

See also in sourсe #XX -- [ Pg.53 ]

See also in sourсe #XX -- [ Pg.293 , Pg.294 ]




SEARCH



DI ISOPROPYL

Di ether

Ethers isopropyl ether

Isopropyl ether

© 2024 chempedia.info