Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Deuterium rate effects

Methylene-l-pyrazoline Secondary deuterium isotope effects on the reaction rate 81CJC2556... [Pg.255]

For this type of reaction the value of the solvent deuterium isotope effect is often a conclusive argument for the proposed mechanism 16). Rate measurements of 1 in acetic acid-acetate buffers in light and heavy water resulted in an isotope effect ktiiO lkozo of 2.5, and A oac/ doac of 9. A ratedetermining proton transfer to the /3-carbon atom of the enamine has been proposed and accounts for the experimental results I6-18 Eq. (5). [Pg.106]

A second piece of evidence in support of the E2 mechanism is provided by a phenomenon known as the deuterium isotope effect. For reasons that we won t go into, a carbon-hydrogen bond is weaker by about 5 kj/mol (1.2 kcal/mol) than the corresponding carbon-rfaiiferiwm bond. Thus, a C-H bond is more easily broken than an equivalent C-D bond, and the rate of C-H bond cleavage is faster. For instance, the base-induced elimination of HBv from l-bromo-2-phenylethane proceeds 7.11 times as fast as the corresponding... [Pg.386]

Much evidence has been obtained in support of the El mechanism. For example, El reactions show first-order kinetics, consistent with a rate-limiting spontaneous dissociation process, l- urthermore, El reactions show- no deuterium isotope effect because rupture of the C—H (or C—D) bond occurs after the rate-limiting step rather than during it. Thus, we can t measure a rate difference between a deuterated and nondeuterated substrate. [Pg.392]

In the El reaction, C-X bond-breaking occurs first. The substrate dissociates to yield a carbocation in the slow rate-limiting step before losing H+ from an adjacent carbon in a second step. The reaction shows first-order kinetics and no deuterium isotope effect and occurs when a tertiary substrate reacts in polar, nonbasic solution. [Pg.397]

Deuterium isotope effect (Section 11.8) A tool used in mechanistic investigations to establish whether a C-H bond is broken in tbe rate-limiting step of a reaction. [Pg.1239]

If the deuterium isotope effect on the rearrangement rate ( H/ D3)r is larger than unity and is approximately equal to that on the rate of dediazoniation ( H/ D3)S, it can be concluded that the ion-molecule pair 8.13 is the more likely intermediate for the rearrangement reaction. On the other hand, an isotope effect on the rearrangement rate that is smaller than or equal to unity would indicate the involvement of the benzenespirodiazirine cation 8.17 as an intermediate. [Pg.174]

Penton and Zollinger (1979, 1981 b) reported that this could indeed be the case. The coupling reactions of 3-methylaniline and A,7V-dimethylaniline with 4-methoxy-benzenediazonium tetrafluoroborate in dry acetonitrile showed a number of unusual characteristics, in particular an increase in the kinetic deuterium isotope effect with temperature. C-coupling occurs predominantly (>86% for 3-methylaniline), but on addition of tert-butylammonium chloride the rate became much faster, and triazenes were predominantly formed (with loss of a methyl group in the case of A V-di-methylaniline). Therefore, the initial attack of the diazonium ion is probably at the amine N-atom, and aminoazo formation occurs via rearrangement. [Pg.395]

It is claimed that the limiting value of k bs, 2.81 x 10" sec-1, represents the rate coefficient for the rearrangement reaction above (k,). The ring deuterium isotope effect kH kD was re-determined for this individual rate coefficient for rearrangement by finding the limiting value in the presence of added N-methylaniline and was found to be 2.4 at two different acidities, as compared with 1.7 for the ratio of the observed composite rate coefficients, as expected, since no isotope effect would be predicted for the de-nitrosation step. [Pg.459]

For each catalyst, the mechanism for one direction is the exact reverse of the other, by the principle of microscopic reversibility. As expected from mechanisms in which the C—H bond is broken in the rate-determining step, substrates of the type RCD2COR show deuterium isotope effects (of 5) in both the basic- and the acid -catalyzed processes. [Pg.774]

The rates of hydration of substituted phenylpropiolic acids give a rho of —4.77 when plotted against a, comparable to Ihe acid-catalyzed isomerization of czs-cinnamic acid, with a rho value of —4.3. The solvent deuterium isotope effects are 3.7-S.2 for the isomerization of cinnamic acids at... [Pg.213]

The effects of deuterium substitution on the rates of a-hydroxylation of NNN have been measured. The results obtained in vitro, with rat liver microsomes, showed only a small deuterium isotope effect of 1.2 for 2 -hydroxylation, whereas a significant effect of 2.4-2.7 was observed for 5 -hydroxylation (33). Analogous results were obtained 2n vivo when the urinary metabolites... [Pg.64]

Investigation of water motion in AOT reverse micelles determining the solvent correlation function, C i), was first reported by Sarkar et al. [29]. They obtained time-resolved fluorescence measurements of C480 in an AOT reverse micellar solution with time resolution of > 50 ps and observed solvent relaxation rates with time constants ranging from 1.7 to 12 ns. They also attributed these dynamical changes to relaxation processes of water molecules in various environments of the water pool. In a similar study investigating the deuterium isotope effect on solvent motion in AOT reverse micelles. Das et al. [37] reported that the solvation dynamics of D2O is 1.5 times slower than H2O motion. [Pg.412]

Any mechanism which involves isoenergetic, radiationless internal conversion from C, P, or T to a high vibrational level of the ground state would be expected to show a large deuterium isotope effect on the rate of internal conversion. In the direct photolysis of perdeuterio and perhydrostilbene, Saltiel<8a) found no isotope effect on the photostationary state or upon the quantum yields of cis-to-trans and trans-to-cis conversion. [Pg.195]

Taking into consideration the deuterium isotope effect (k Yfy/kxfD) = 2.3), they concluded that fca< k a< /cb and that the rate-determining step was the first substitution. Ligand substitution was thought to proceed by the Ia mechanism, on the basis of the negative AS and the independence of the rate on the concentration of acetylacetone. This feature is compatible with the results with tris(acetylacetonato)metal(III) previously obtained [21]. Furthermore, in the second transition series the kt value decreases in the order... [Pg.260]

This all seemed very reasonable at the time, but subsequent work was not consistent with it. A small but measurable amount of 180 exchange was reported for some amides in reasonably concentrated HC1 media,277,278 and for at least one amide the amount of exchange decreased with increasing acidity,277 which is the opposite of what would be expected with the Scheme 14 one-water-molecule mechanism taking over from the equation (74) three-water-molecule mechanism as the acidity increased. Also, the solvent deuterium isotope effect was found to be close to unity for at least one amide,278 a result that has since been confirmed,279 which is not what would be expected on the basis of either a three- or a one-water-molecule process.280 Because of this it was decided to reexamine the lactam hydrolysis data subsequent to the publication of the excess acidity analysis of the H NMR results for these,268 a new study appeared with rate constant data for four of these molecules in aqueous H2S04 media obtained by UV spectroscopy at several temperatures,281 and this was included too.282... [Pg.53]

The observation of a primary solvent deuterium isotope effect (kH/fa>) = 2-4 on the specific acid-catalyzed hydrolysis of vinyl ethers provides evidence for reaction by rate-determining protonation of the alkene.69 Values of kHikD 1 are expected if alkene hydration proceeds by rate-determining addition of solvent to an oxocarbenium ion intermediate, since there is no motion of a solvent hydron at the transition state for this step. However, in the latter case, determination of the solvent isotope effect on the reaction of the fully protonated substrate is complicated by the competing exchange of deuterium from solvent into substrate (see above). [Pg.80]

The formation of the Wheland intermediate from the ion-radical pair as the critical reactive intermediate is common in both nitration and nitrosation processes. However, the contrasting reactivity trend in various nitrosation reactions with NO + (as well as the observation of substantial kinetic deuterium isotope effects) is ascribed to a rate-limiting deprotonation of the reversibly formed Wheland intermediate. In the case of aromatic nitration with NO, deprotonation is fast and occurs with no kinetic (deuterium) isotope effect. However, the nitrosoarenes (unlike their nitro counterparts) are excellent electron donors as judged by their low oxidation potentials as compared to parent arene.246 As a result, nitrosoarenes are also much better Bronsted bases249 than the corresponding nitro derivatives, and this marked distinction readily accounts for the large differentiation in the deprotonation rates of their respective conjugate acids (i.e., Wheland intermediates). [Pg.292]

In view of the large hydrogen-deuterium isotope effect of 5.26, Baneijee and coworkers proposed that the proton transfer mechanism (Scheme 41) is also operating. In this mechanism, pyridine behaves as a base and abstracts a proton in the rate-determining step. [Pg.836]

At low hydroxide-ion concentrations, the rate of approach to equilibrium after a temperature jump decreases as the hydroxide-ion concentration increases. At higher concentrations the reaction becomes first order in hydroxide ion. The value of the kinetic solvent deuterium isotope effect on the reaction shows little variation over the range of hydroxide-ion concentrations studied as shown in Fig. 19. The ratio t-1(H20)/t 1(D20) at a particular concentration of OL (L = H or D) remains within the range 2.0 to 3.0 for OL" concentrations of 0.001 to 0.100 mol dm - 3 and provides little mechanistic information. Similar results were obtained in the original work (Perlmutter-Hayman and Shinar, 1978). [Pg.179]

Because solvent viscosity experiments indicated that the rate-determining step in the PLCBc reaction was likely to be a chemical one, deuterium isotope effects were measured to probe whether proton transfer might be occurring in this step. Toward this end, the kinetic parameters for the PLCBc catalyzed hydrolysis of the soluble substrate C6PC were determined in D20, and a normal primary deuterium isotope effect of 1.9 on kcat/Km was observed for the reaction [34]. A primary isotope effect of magnitude of 1.9 is commonly seen in enzymatic reactions in which proton transfer is rate-limiting, although effects of up to 4.0 have been recorded [107-110]. [Pg.160]


See other pages where Deuterium rate effects is mentioned: [Pg.43]    [Pg.43]    [Pg.18]    [Pg.3]    [Pg.29]    [Pg.279]    [Pg.1295]    [Pg.52]    [Pg.174]    [Pg.325]    [Pg.419]    [Pg.429]    [Pg.297]    [Pg.298]    [Pg.1528]    [Pg.258]    [Pg.260]    [Pg.271]    [Pg.383]    [Pg.97]    [Pg.310]    [Pg.283]    [Pg.109]    [Pg.212]    [Pg.177]    [Pg.775]    [Pg.835]    [Pg.836]    [Pg.159]    [Pg.163]   


SEARCH



Deuterium effects

© 2024 chempedia.info