Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Detectors discriminator

Detector selectivity is much more important in LC than in GC since, in general, separations must be performed with a much smaller number of theoretical plates, and for complex mixtures both column separation and detector discrimination may be equally significant in obtaining an acceptable result. Sensitivity is important for trace analysis and for compatibility with the small sizes and miniaturised detector volumes associated with microcolumns in LC. The introduction of small bore packed columns in HPLC with reduced peak volume places an even greater strain on LC detector design. It is generally desirable to have a nondestructive detector this allows coupling several detectors in series (dual... [Pg.240]

Figure Bl.10.2. Schematic diagram of a counting experiment. The detector intercepts signals from the source. The output of the detector is amplified by a preamplifier and then shaped and amplified friitlier by an amplifier. The discriminator has variable lower and upper level tliresholds. If a signal from the amplifier exceeds tlie lower tlireshold while remaming below the upper tlireshold, a pulse is produced that can be registered by a preprogrammed counter. The contents of the counter can be periodically transferred to an online storage device for fiirther processing and analysis. The pulse shapes produced by each of the devices are shown schematically above tlieni. Figure Bl.10.2. Schematic diagram of a counting experiment. The detector intercepts signals from the source. The output of the detector is amplified by a preamplifier and then shaped and amplified friitlier by an amplifier. The discriminator has variable lower and upper level tliresholds. If a signal from the amplifier exceeds tlie lower tlireshold while remaming below the upper tlireshold, a pulse is produced that can be registered by a preprogrammed counter. The contents of the counter can be periodically transferred to an online storage device for fiirther processing and analysis. The pulse shapes produced by each of the devices are shown schematically above tlieni.
There are a number of observations to be drawn from the above fomuila the relative uncertainty can be reduced to an arbitrarily small value by increasing T, but because the relative uncertainty is proportional to /s/f, a reduction in relative uncertainty by a factor of two requires a factor of four increase in collection time. The relative uncertainty can also be reduced by reducing At. Flere, it is understood that At is the smallest time window that just includes all of the signal. At can be decreased by using the fastest possible detectors, preamplifiers and discriminators and minimizing time dispersion in the section of the experiment ahead of the detectors. [Pg.1430]

TOF mass spectrometers are very robust and usable with a wide variety of ion sources and inlet systems. Having only simple electrostatic and no magnetic fields, their construction, maintenance, and calibration are usually straightforward. There is no upper theoretical mass limitation all ions can be made to proceed from source to detector. In practice, there is a mass limitation in that it becomes increasingly difficult to discriminate between times of arrival at the detector as the m/z value becomes large. This effect, coupled with the spread in arrival times for any one m/z value, means that discrimination between unit masses becomes difficult at about m/z 3000. At m/z 50,000, overlap of 50 mass units is more typical i.e., mass accuracy is no better than about 50-100 mass... [Pg.191]

Spectral discrimination (9) and specific gas detection can be modeled if one assumes the gas absorbs photons of a specific wavelength exponentially with distance into the gas (Beet s law). When the absorption distance is x (cm), the incident it power density at the detector in the spectral band pass is J (W/cm ) and the power density incident on the gas is the gas concentration, C (ppm) is given by ... [Pg.292]

The detection of a specific gas (10) is accompHshed by comparing the signal of the detector that is constrained to the preselected spectral band pass with a reference detector having all conditions the same except that its preselected spectral band is not affected by the presence of the gas to be detected. Possible interference by other gases must be taken into account. It may be necessary to have multiple channels or spectral discrimination over an extended Spectral region to make identification highly probable. Except for covert surveillance most detection scenarios are highly controlled and identification is not too difficult. [Pg.293]

Detectors. The function of the gc detector is to sense the presence of a constituent of the sample at the outlet of the column. Selectivity is the property that allows the detector to discriminate between constituents. Thus a detector selective to a particular compound type responds especially weU to compounds of that type, but not to other chemical species. The response is the signal strength generated by a given quantity of material. Sensitivity is a measure of the abiHty of the detector to register the presence of the component of interest. It is usually given as the quantity of material that can be detected having a response at twice the noise level of the detector. [Pg.107]

The great advantage of the mass spectrometer is its abihty to use mass, more accurately the mass-to-charge ratio, as a discriminating feature. In contrast to, for example, the UV detector, which gives rise to broad signals with little selectivity, the ions in the mass spectrum of a particular analyte are often characteristic of that analyte. Under these conditions, discrete signals, which may be measured accurately and precisely, may be obtained from each analyte when they are only partially resolved or even completely umesolved from the other compounds present. [Pg.38]

The advantage of using a mass spectrometer as the detector is associated with cases (ii) and (iii) above. In particular, because mass may be used as a discriminating feature, it is possible to use an isotopically labelled analyte as an internal standard. These have virtnally identical physical and chemical properties to the unlabelled analogue, and are therefore likely to experience similar losses during... [Pg.46]

The mass spectrometer provides the most definitive identification of aU of the HPLC detectors. It allows the molecular weight of the analyte to be determined - this is the single most discriminating piece of information that may be obtained - which, together with the structural information that may be generated, often allows an unequivocal identification to be made. [Pg.47]

Scattered radiation. In a transmission experiment, the Mossbauer sample emits a substantial amount of scattered radiation, originating from XRF and Compton scattering, but also y-radiation emitted by the Mossbauer nuclei upon de-excitation of the excited state after resonant absorption. Since scattering occurs in 4ti solid angle, the y-detector should not be positioned too close to the absorber so as not to collect too much of this unwanted scattered radiation. The corresponding pulses may not only uimecessarily overload the detector and increase the counting dead time, but they may also affect the y-discrimination in the SCA and increase the nonresonant background noise. [Pg.45]

Solute property detectors, such as spectroscopic andj electrochemical detectors, respond to a physical or chemical] property characteristic of the solute which, ideally, is] independent of the mobile phase. Althou this criterion is rarely met in practice, the signal discrimination is usually sufficient to permit operation with solvent changes (e.g., flow programming, gradient elution, etc.) and to provide high sensitivity with aj wide linear response range. Table 5.4. Solute-specific detectors complement ulk property detectors as they provide high ... [Pg.289]


See other pages where Detectors discriminator is mentioned: [Pg.802]    [Pg.530]    [Pg.30]    [Pg.140]    [Pg.115]    [Pg.802]    [Pg.530]    [Pg.30]    [Pg.140]    [Pg.115]    [Pg.1420]    [Pg.1421]    [Pg.1426]    [Pg.1428]    [Pg.1829]    [Pg.1849]    [Pg.2440]    [Pg.290]    [Pg.292]    [Pg.432]    [Pg.104]    [Pg.2328]    [Pg.244]    [Pg.431]    [Pg.712]    [Pg.215]    [Pg.68]    [Pg.224]    [Pg.227]    [Pg.227]    [Pg.258]    [Pg.311]    [Pg.93]    [Pg.27]    [Pg.622]    [Pg.181]    [Pg.26]    [Pg.37]    [Pg.40]    [Pg.41]    [Pg.151]    [Pg.649]    [Pg.991]    [Pg.993]   
See also in sourсe #XX -- [ Pg.128 ]




SEARCH



© 2024 chempedia.info