Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Desorption simulation

However, ia some cases, the answer is not clear. A variety of factors need to be taken iato consideration before a clear choice emerges. Eor example, UOP s Molex and IsoSiv processes are used to separate normal paraffins from non-normals and aromatics ia feedstocks containing C —C2Q hydrocarbons, and both processes use molecular sieve adsorbents. However, Molex operates ia simulated moving-bed mode ia Hquid phase, and IsoSiv operates ia gas phase, with temperature swiag desorption by a displacement fluid. The foUowiag comparison of UOP s Molex and IsoSiv processes iadicates some of the primary factors that are often used ia decision making ... [Pg.303]

There are seven commercial processes in operation six operate in the vapor phase. The Universal Oil Products process operates in the Hquid phase and is unique in the simulation of a moving bed. The adsorption unit consists of one vessel segmented into sections with multiple inlet and oudet ports. Flow to the various segments is accompHshed by means of a rotary valve which allows each bed segment to proceed sequentially through all the adsorption/desorption steps. [Pg.457]

Eight variants of the DD reaction mechanism, described by Eqs. (21-25) have been simulated. The simplest approach is to neglect B2 desorption in Eq. (22) and the reaction between AB species (Eq. (25)). For this case, an IPT is observed at the critical point Tib, = 2/3. Thus this variant of the model has a zero-width reaction window and the trivial critical point is given by the stoichiometry of the reaction. For Tb2 < T1B2 the surface becomes poisoned by a binary compound of (A -I- AB) species and the lattice cannot be completely covered because of the dimer adsorption requirement of a... [Pg.420]

B. Meng, W. H. Weinberg. Monte Carlo simulation of temperature programmed desorption spectra. J Chem Phys 700 5280-1589, 1994. [Pg.431]

E. V. Albano. Monte Carlo simulation of a bimolecular reaction of the type A-t- (1/2) B2 —> AB. The influence of A-desorption on kinetic phase transitions. Appl Phys A 55 226-230, 1992. [Pg.433]

In this review we put less emphasis on the physics and chemistry of surface processes, for which we refer the reader to recent reviews of adsorption-desorption kinetics which are contained in two books [2,3] with chapters by the present authors where further references to earher work can be found. These articles also discuss relevant experimental techniques employed in the study of surface kinetics and appropriate methods of data analysis. Here we give details of how to set up models under basically two different kinetic conditions, namely (/) when the adsorbate remains in quasi-equihbrium during the relevant processes, in which case nonequilibrium thermodynamics provides the needed framework, and (n) when surface nonequilibrium effects become important and nonequilibrium statistical mechanics becomes the appropriate vehicle. For both approaches we will restrict ourselves to systems for which appropriate lattice gas models can be set up. Further associated theoretical reviews are by Lombardo and Bell [4] with emphasis on Monte Carlo simulations, by Brivio and Grimley [5] on dynamics, and by Persson [6] on the lattice gas model. [Pg.440]

The competitive adsorption isotherms were determined experimentally for the separation of chiral epoxide enantiomers at 25 °C by the adsorption-desorption method [37]. A mass balance allows the knowledge of the concentration of each component retained in the particle, q, in equilibrium with the feed concentration, < In fact includes both the adsorbed phase concentration and the concentration in the fluid inside pores. This overall retained concentration is used to be consistent with the models presented for the SMB simulations based on homogeneous particles. The bed porosity was taken as = 0.4 since the total porosity was measured as Ej = 0.67 and the particle porosity of microcrystalline cellulose triacetate is p = 0.45 [38]. This procedure provides one point of the adsorption isotherm for each component (Cp q. The determination of the complete isotherm will require a set of experiments using different feed concentrations. To support the measured isotherms, a dynamic method of frontal chromatography is implemented based on the analysis of the response curves to a step change in feed concentration (adsorption) followed by the desorption of the column with pure eluent. It is well known that often the selectivity factor decreases with the increase of the concentration of chiral species and therefore the linear -i- Langmuir competitive isotherm was used ... [Pg.244]

They varied only the values of the adsorption and desorption rate constants of the reaction intermediate B, and by using the simplest Langmuir kinetics, they calculated time-concentration curves of compounds A, B, and C shown in Fig. 5. Also from this example, which does not consider any step as clearly rate determining, it is evident how very different concentration versus time plots can be obtained for the same sequence of surface reactions if adsorption and desorption of the intermediate B proceed by different rates, which are, however, comparable with the rate of surface reactions. In particular, the curves in the first and second columns of Fig. 5 simulate the parallel formation of substances B and C, at least... [Pg.15]

For estimates of both Ed and fcd in the Arrhenius equation, in principle two different points on a desorption peak or two runs with different heating factors o2 are required. One obvious point is the maximum of the peak, and very often only this is used while the value of kd is supposed to be of the order of magnitude 1012 to 1013 sec-1. As seen from Eq. (28), the location of Tm depends but weakly on fcd as compared to its dependence on Ed, so that an uncertainty in the value of kd of one order of magnitude does not affect the estimated value of Ed appreciably. This has been clearly illustrated by analogue simulation of the thermodesorption processes (104). On the other hand, the said fact causes the estimates of kd to be very uncertain. A recently published computational analysis of the peak location behavior shows the accuracy of the obtained values of Ed (105). [Pg.376]

SIMULATION AND EXPERIMENT RESULTS FOR ADSORPTION AND DESORPTION IN CANISTER OF AN ORVR SYSTEM... [Pg.703]

Fig. 5. The comparison of weight change in canister between experiment and simulation during adsorption and desorption operation. Fig. 5. The comparison of weight change in canister between experiment and simulation during adsorption and desorption operation.
The validity of the model is tested against the experiment. A ISOOcc canister, which is produced by UNICK Ltd. in Korea, is used for model validation experiment. In the case of adsorption, 2.4//min butane and 2.4//min N2 as a carrier gas simultaneously enter the canister and 2.1//min air flows into canister with a reverse direction during desorption. These are the same conditions as the products feasibility test of UNICK Ltd. The comparison between the simulation and experiment showed the validity of our model as in Fig. 5. The amount of fuel gas in the canister can be predicted with reasonable accuracy. Thus, the developed model is shown to be effective to simulate the behavior of adsorption/desorption of actual ORVR system. [Pg.704]

The ORVR system is an important subsystem which reduces the contamination of evaporative fuel gas at gas station during the fueling. In this paper, a simulation model of adsoiption and desorption of evaporative fuel gas in canister of ORVR system is developed. From the comparison between the simulations and experiments, the validity of the developed model is verified and the dynamics can be predicted. This PDE model can be used to design the canister of ORVR system effectively for diverse climate and operating conditions. [Pg.704]

Figure 7.12. Dissociation of NO N + O in a temperature-programmed desorption and static SIMS experiment, along with Monte Carlo simulations, showing the effect of lateral interactions (see text for explanation). The bottom part shows representative arrangements of NO molecules (grey), and... Figure 7.12. Dissociation of NO N + O in a temperature-programmed desorption and static SIMS experiment, along with Monte Carlo simulations, showing the effect of lateral interactions (see text for explanation). The bottom part shows representative arrangements of NO molecules (grey), and...
The Monte Carlo method as described so far is useful to evaluate equilibrium properties but says nothing about the time evolution of the system. However, it is in some cases possible to construct a Monte Carlo algorithm that allows the simulated system to evolve like a physical system. This is the case when the dynamics can be described as thermally activated processes, such as adsorption, desorption, and diffusion. Since these processes are particularly well defined in the case of lattice models, these are particularly well suited for this approach. The foundations of dynamical Monte Carlo (DMC) or kinetic Monte Carlo (KMC) simulations have been discussed by Eichthom and Weinberg (1991) in terms of the theory of Poisson processes. The main idea is that the rate of each process that may eventually occur on the surface can be described by an equation of the Arrhenius type ... [Pg.670]

Wittmer, J., Johner, A., Joarmy J. F. and Binder, K. (1994) Chain desorption from a semidilute polymer brush - a Monte-Carlo simulation./. Chem. Phys., 101, 4379-4390. [Pg.69]

Both batch and continuous adsorption processes are used. In a batch process, the adsorbent bed is allowed to become saturated with adsorbed material and is subsequently regenerated in a cyclic manner. In a continuous process, usually the counter-current mode is adopted for adsorption and desorption, either in time form or in simulated mode. Continuous operation offers many advantages with respect to the efficiency of adsorbent utilization. Thus, for... [Pg.426]

Simulations of the storage have shown that desorption temperatures below the possible 130 °C from the district heat can lead to higher COPcw,/. Experiments with 130 °C, 100 °C and 80 °C were carried out. Figure 256 shows the 100 °C desorption as an example. [Pg.423]

An assumption implicit in most adsorption studies is that adsorption is fully reversible. In other words, once the empirical coefficients are measured for a particular substance, Equations 20.6 to 20.10 describe both adsorption and desorption isotherms. This assumption is not always true. Collins and Crocker140 observed apparently irreversible adsorption of phenol in flowthrough adsorption experiments involving phenol interacting on a Frio sandstone core under simulated deep-well... [Pg.830]


See other pages where Desorption simulation is mentioned: [Pg.66]    [Pg.211]    [Pg.143]    [Pg.114]    [Pg.408]    [Pg.1731]    [Pg.282]    [Pg.66]    [Pg.211]    [Pg.143]    [Pg.114]    [Pg.408]    [Pg.1731]    [Pg.282]    [Pg.122]    [Pg.498]    [Pg.287]    [Pg.467]    [Pg.211]    [Pg.377]    [Pg.412]    [Pg.944]    [Pg.350]    [Pg.364]    [Pg.413]    [Pg.111]    [Pg.12]    [Pg.179]    [Pg.206]    [Pg.701]    [Pg.703]    [Pg.703]    [Pg.113]    [Pg.281]    [Pg.283]    [Pg.110]    [Pg.513]    [Pg.415]    [Pg.12]   
See also in sourсe #XX -- [ Pg.183 , Pg.184 ]




SEARCH



Electron simulated desorption

Simulation for Desorption (Regeneration) and Verification

The Simulation for Desorption (Regeneration) and Verification

© 2024 chempedia.info