Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Desflurane inhaled anesthetic

Desflurane is less potent than the other fluorinated anesthetics having MAC values of 5.7 to 8.9% in animals (76,85), and 6% to 7.25% in surgical patients. The respiratory effects are similar to isoflurane. Heart rate is somewhat increased and blood pressure decreased with increasing concentrations. Cardiac output remains fairly stable. Desflurane does not sensitize the myocardium to epinephrine relative to isoflurane (86). EEG effects are similar to isoflurane and muscle relaxation is satisfactory (87). Desflurane is not metabolized to any significant extent (88,89) as levels of fluoride ion in the semm and urine are not increased even after prolonged exposure. Desflurane appears to offer advantages over sevoflurane and other inhaled anesthetics because of its limited solubiHty in blood and other tissues. It is the least metabolized of current agents. [Pg.409]

Hypnotics. Common hypnotics are thiopental, propofol, midazolam, etomidate, ketamine and inhaled anesthetics. The incidence of hypersensitivity reactions with thiopental is rare. Recently, thiopental was involved in less than 1% of allergic reactions in France [9]. Ever since Cremophor EL, used as a solvent for some non-barbiturate hypnotics, has been avoided, many previously reported hypersensitivity reactions have disappeared. In the last French surveys, reactions to propofol accounted for less than 2.5% of allergic reactions, and reactions to midazolam, etomidate or ketamine appear to be really rare [9]. Finally, no immune-mediated immediate hypersensitivity reaction involving isoflurane, desflurane or sevoflurane has been reported despite their wide use. [Pg.185]

The distribution of anesthetic throughout the entire body may be viewed as an equilibration process (Fig. 7.1.13), with tissues characterized by high blood flows reaching equilibration faster than muscle and fatJ4 Nevertheless, an anesthetic that is excessively soluble in blood will not partition substantially into brain and other tissues. The anesthetic properties of nitrous oxide and diethyl ether have been known since the 1840s. Zeneca Pharmaceuticals introduced the first modem inhalation anesthetic fluothane in 1957. Methoxyfluorane followed in 1960, enflurane 1973, isoflurane 1981, desflurane by Anaquest (Liberty Comer, NJ) in 1992, and sevoflurane by Abbott Laboratories in 1995J6 ... [Pg.81]

The chemical structures of the currently available inhaled anesthetics are shown in Figure 25-2. The most commonly used inhaled anesthetics are isoflurane, desflurane, and sevoflurane. These compounds are volatile liquids that are aerosolized in specialized vaporizer delivery systems. Nitrous oxide, a gas at ambient temperature and pressure, continues to be an important adjuvant to the volatile agents. However, concerns about environmental pollution and its ability to increase the incidence of postoperative nausea and vomiting (PONV) have resulted in a significant decrease in its use. [Pg.536]

Inhaled anesthetics that are relatively insoluble in blood (ie, possess low blood gas partition coefficients) and brain are eliminated at faster rates than the more soluble anesthetics. The washout of nitrous oxide, desflurane, and sevoflurane occurs at a rapid rate, leading to a more rapid recovery from their anesthetic effects compared with halothane and isoflurane. Halothane is approximately twice as soluble in brain tissue and five times more soluble in blood than nitrous oxide and desflurane its elimination therefore takes place more slowly, and recovery from halothane- and isoflurane-based anesthesia is predictably less rapid. [Pg.543]

The metabolism of enflurane and sevoflurane results in the formation of fluoride ion. However, in contrast to the rarely used volatile anesthetic methoxyflurane, renal fluoride levels do not reach toxic levels under normal circumstances. In addition, sevoflurane is degraded by contact with the carbon dioxide absorbent in anesthesia machines, yielding a vinyl ether called "compound A," which can cause renal damage if high concentrations are absorbed. (See Do We Really Need Another Inhaled Anesthetic ) Seventy percent of the absorbed methoxyflurane is metabolized by the liver, and the released fluoride ions can produce nephrotoxicity. In terms of the extent of hepatic metabolism, the rank order for the inhaled anesthetics is methoxyflurane > halothane > enflurane > sevoflurane > isoflurane > desflurane > nitrous oxide (Table 25-2). Nitrous oxide is not metabolized by human tissues. However, bacteria in the gastrointestinal tract may be able to break down the nitrous oxide molecule. [Pg.543]

Sevoflurane comes close to having the characteristics of an ideal inhaled anesthetic however, a more insoluble compound that lacks the pungency of desflurane and has greater chemical stability than sevoflurane could be a useful alternative to the currently available inhaled agents. One of the possible new inhaled anesthetics that could be developed for clinical use in the future is xenon. However, the high cost of this novel drug may preclude its use in routine clinical practice. [Pg.544]

Inhaled anesthetics change heart rate either directly by altering the rate of sinus node depolarization or indirectly by shifting the balance of autonomic nervous system activity. Bradycardia can be seen with halothane, probably because of direct vagal stimulation. In contrast, enflurane, and sevoflurane have little effect, and both desflurane and isoflurane increase heart rate. In the case of desflurane, transient sympathetic activation with elevations in catecholamine levels can lead to marked increases in heart rate and blood pressure when high inspired gas concentrations are administered. [Pg.546]

Of the inhaled anesthetics, nitrous oxide is the least likely to increase cerebral blood flow. At low concentrations, all of the halogenated agents have similar effects on cerebral blood flow. However, at higher concentrations, the increase in cerebral blood flow is less with the less soluble agents such as desflurane and sevoflurane. If the patient is hyperventilated before the volatile agent is started, the increase in intracranial pressure can be minimized. [Pg.547]

Inhaled (volatile) anesthetics potentiate the neuromuscular blockade produced by nondepolarizing muscle relaxants in a dose-dependent fashion. Of the general anesthetics that have been studied, inhaled anesthetics augment the effects of muscle relaxants in the following order isoflurane (most) sevoflurane, desflurane, enflurane, and halothane and nitrous oxide (least) (Figure 27-9). The most important factors involved in this interaction are the following (1) nervous system depression at sites proximal to the neuromuscular junction (ie, central nervous system) (2) increased muscle blood flow (ie, due to peripheral vasodilation produced by volatile anesthetics), which allows a larger fraction of the injected muscle relaxant to reach the neuromuscular junction and (3) decreased sensitivity of the postjunctional membrane to depolarization. [Pg.589]

Inhaled anesthetics currently in use include halo-genated volatile liquids such as desflurane, enflurane, halothane, isoflurane, methoxyflurane, and sevoflurane (Table 11-1). These volatile liquids are all chemically similar, but newer agents such as desflurane and sevoflurane are often used preferentially because they permit a more rapid onset, a faster recovery, and better control during anesthesia compared to older agents such as halothane.915 These volatile liquids likewise represent the primary form of inhaled anesthetics. The only gaseous anesthetic currently in widespread use is nitrous oxide, which is usually reserved for relatively short-term procedures (e.g., tooth extractions). Earlier inhaled anesthetics, such as ether, chloroform, and cyclopropane, are not currently used because they are explosive in nature or produce toxic effects that do not occur with the more modern anesthetic agents. [Pg.136]

An increase in pulmonary blood flow (increased cardiac output) slows the rate of rise in arterial tension, particularly for those anesthetics with moderate to high blood solubility. This is because increased pulmonary blood flow exposes a larger volume of blood to the anesthetic thus, blood "capacity" increases and the anesthetic tension rises slowly. A decrease in pulmonary blood flow has the opposite effect and increases the rate of rise of arterial tension of inhaled anesthetics. In a patient with circulatory shock, the combined effects of decreased cardiac output (resulting in decreased pulmonary flow) and increased ventilation will accelerate the induction of anesthesia with halothane and isoflurane. This is not likely to occur with nitrous oxide, desflurane, or sevoflurane because of their low blood solubility. [Pg.589]

Inhaled anesthetics that are relatively insoluble in blood (low blood gas partition coefficient) and brain are eliminated at faster rates than more soluble anesthetics. The washout of nitrous oxide, desflurane, and sevoflurane occurs at a rapid rate, which leads to a more rapid recovery from their anesthetic effects compared to halothane and isoflurane. Halothane is approximately twice as soluble in brain tissue and five times more soluble in blood than nitrous oxide and desflurane its elimination therefore takes place more slowly, and recovery from halothane anesthesia is predictably less rapid. The duration of exposure to the anesthetic can also have a marked effect on the time of recovery, especially in the case of more soluble anesthetics. Accumulation of anesthetics in tissues, including muscle, skin, and fat, increases with continuous inhalation (especially in obese patients), and blood tension may decline slowly during recovery as the anesthetic is gradually eliminated from these tissues. Thus, if exposure to the anesthetic is short, recovery may be rapid even with the more soluble agents. However, after prolonged anesthesia, recovery may be delayed even with anesthetics of moderate solubility such as isoflurane. [Pg.590]

Juza, M, Braun, M., and Schurig, V. (1997) Preparative enantiomer separation of the chiral inhalation anesthetics enfiurane, isoflurane and desflurane by gas chromatography on a derivatized 7-cyclodextrin stationary phase, J. Chromatogr. A 769, 119-127. [Pg.297]

Peripheral neuropathy has been reported in two healthy men anesthetized with 1.25 MAC sevoflurane at 21/minute fresh gas flow for 8 hours. Their average concentrations of compound A were 45 and 28 ppm. Both had had previous minor injuries in the regions in which the neuropathies were reported. The authors suggested that compound A, or other factors associated with sevoflurane anesthesia, may predispose patients to peripheral neuropathy. Both men were volunteers for earlier published studies comparing the nephrotoxic properties of sevoflurane and desflurane, sponsored by Baxter PPD, New Jersey, the manufacturer of desflurane, a rival inhalational anesthetic agent these reports need to be regarded with caution. [Pg.3125]

Modem inhalation anesthetics are fluoiinated to reduce flammabihty. Initially, these inhaled agents were believed to be biochemically inert. Over the past 30 years, however, research findings have demonstrated that not only are inhaled anesthetics metabolized in vivo [27], but their metabolites are also responsible for both acute and chronic toxicities [28,29]. Therefore, the use of some anesthetics has been discontinued, including methoxyflurane because of its nephrotoxicity and other anesthetics are more selectively used, e.g. halothane due to a rare incidence of liver toxicity. Studies have also provided the impetus to develop new agents - isoflurane and desflurane - with properties that lower their toxic potential. The result has been improved safety, but there is room for further improvement as our insight into toxicological mechanisms expands. [Pg.538]

Desflurane has the lowest bloodigas partition coefficient of all of the modern inhalation anesthetic agents. Rapid onset of anesthesia and short recovery times are associated with its use in horses (Tendillo et al 1997). Mask induction with desflurane in unsedated horses (vaporizer setting 18%, 101/min oxygen flow rate) resulted in... [Pg.294]

In ponies, desflurane (MAC) caused a decrease in arterial blood pressure and systemic vascular resistance while heart rate and cardiac index were not changed significantly (Clarke et al 1996). Increasing the concentration of desflurane to 1.3 times MAC resulted in further depression of the arterial blood pressure and a significant decrease in the cardiac index, attributed to the onset of cardiac depression at higher concentrations (Clarke et al 1996). Desflurane also results in respiratory depression there is a significant increase in PaC02 at MAC (Clarke et al 1996). In other species, the cardiopulmonary effects of desflurane are considered to be approximately equal to those of isoflurane, but a direct comparison of desflurane and other inhalation anesthetics has not yet been carried out in the horse. [Pg.294]

The main applications of enantiomeric separation by GC concern precise determination of enantiomeric composition of chiral research chemicals, drugs, intermediates, metabolites, pesticides, flavors and fragrances, etc. CHIRBASE, a database of chiral compounds, provides comprehensive structural, experimental, and bibliographic information on successful and unsuccessful chiral separations, and rule sets for each CSP and information about the processes of chiral separations. According to CHIRBASE, an appropriate CSP is available for almost every racemic mixture of compounds ranging form apolar to polar. Some 22,000 separations of enantiomers, involving 5,500 basic chiral compounds and documented in 2,200 publications, have been achieved by GC. This method is particularly suitable for volatile compounds such as inhalation anesthetic agents, e.g., enflurane, isoflurane, desflurane, and racemic a-ionone. [Pg.454]

Although gas chromatography (GC) is a well established method for the analytical determination of enantiomeric purity, the number of preparative applications is quite limited. Most of these preparative applications by gas chromatography have been recently reviewed [181] and were performed on a relatively small scale. The method is particularly suited for volatile compounds such as the inhalation anesthetic agents enflurane, isoflurane and desflurane [182] and it has also been recently applied to the resolution of racemic a-ionone [183]. The feasibility of separating the enantiomers by gas phase simulated moving bed chromatography has also been demonstrated for the first time and was applied to the anesthetic enflurane (Fig. 6.18) [184]. However, the productivity of the system was relatively low. [Pg.179]

Inhaled anesthetics Volatile liquids Halothane Enflurane, desflurane, isoflurane, methoxyflurane, sevoflurane... [Pg.234]


See other pages where Desflurane inhaled anesthetic is mentioned: [Pg.469]    [Pg.354]    [Pg.542]    [Pg.543]    [Pg.547]    [Pg.547]    [Pg.549]    [Pg.591]    [Pg.594]    [Pg.597]    [Pg.598]    [Pg.598]    [Pg.285]    [Pg.289]    [Pg.299]    [Pg.538]    [Pg.290]    [Pg.291]    [Pg.151]    [Pg.374]    [Pg.445]    [Pg.900]    [Pg.231]    [Pg.236]   
See also in sourсe #XX -- [ Pg.282 ]




SEARCH



Anesthetic

Anesthetics inhalation

Anesthetics inhalation agents (desflurane

Anesthetics inhalational

Desflurane

Inhalants anesthetics

Inhaled anesthetics

© 2024 chempedia.info