Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Anesthetics inhalation agents desflurane

The chemical structures of the currently available inhaled anesthetics are shown in Figure 25-2. The most commonly used inhaled anesthetics are isoflurane, desflurane, and sevoflurane. These compounds are volatile liquids that are aerosolized in specialized vaporizer delivery systems. Nitrous oxide, a gas at ambient temperature and pressure, continues to be an important adjuvant to the volatile agents. However, concerns about environmental pollution and its ability to increase the incidence of postoperative nausea and vomiting (PONV) have resulted in a significant decrease in its use. [Pg.536]

Sevoflurane comes close to having the characteristics of an ideal inhaled anesthetic however, a more insoluble compound that lacks the pungency of desflurane and has greater chemical stability than sevoflurane could be a useful alternative to the currently available inhaled agents. One of the possible new inhaled anesthetics that could be developed for clinical use in the future is xenon. However, the high cost of this novel drug may preclude its use in routine clinical practice. [Pg.544]

Modem inhalation anesthetics are fluoiinated to reduce flammabihty. Initially, these inhaled agents were believed to be biochemically inert. Over the past 30 years, however, research findings have demonstrated that not only are inhaled anesthetics metabolized in vivo [27], but their metabolites are also responsible for both acute and chronic toxicities [28,29]. Therefore, the use of some anesthetics has been discontinued, including methoxyflurane because of its nephrotoxicity and other anesthetics are more selectively used, e.g. halothane due to a rare incidence of liver toxicity. Studies have also provided the impetus to develop new agents - isoflurane and desflurane - with properties that lower their toxic potential. The result has been improved safety, but there is room for further improvement as our insight into toxicological mechanisms expands. [Pg.538]

Desflurane is less potent than the other fluorinated anesthetics having MAC values of 5.7 to 8.9% in animals (76,85), and 6% to 7.25% in surgical patients. The respiratory effects are similar to isoflurane. Heart rate is somewhat increased and blood pressure decreased with increasing concentrations. Cardiac output remains fairly stable. Desflurane does not sensitize the myocardium to epinephrine relative to isoflurane (86). EEG effects are similar to isoflurane and muscle relaxation is satisfactory (87). Desflurane is not metabolized to any significant extent (88,89) as levels of fluoride ion in the semm and urine are not increased even after prolonged exposure. Desflurane appears to offer advantages over sevoflurane and other inhaled anesthetics because of its limited solubiHty in blood and other tissues. It is the least metabolized of current agents. [Pg.409]

Of the inhaled anesthetics, nitrous oxide is the least likely to increase cerebral blood flow. At low concentrations, all of the halogenated agents have similar effects on cerebral blood flow. However, at higher concentrations, the increase in cerebral blood flow is less with the less soluble agents such as desflurane and sevoflurane. If the patient is hyperventilated before the volatile agent is started, the increase in intracranial pressure can be minimized. [Pg.547]

Recovery is sufficiently rapid with most intravenous drugs to permit their use for short ambulatory (outpatient) surgical procedures. In the case of propofol, recovery times are similar to those seen with sevoflurane and desflurane. Although most intravenous anesthetics lack antinociceptive (analgesic) properties, their potency is adequate for short superficial surgical procedures when combined with nitrous oxide or local anesthetics, or both. Adjunctive use of potent opioids (eg, fentanyl, sufentanil or remifentanil see Chapter 31) contributes to improved cardiovascular stability, enhanced sedation, and perioperative analgesia. However, opioid compounds also enhance the ventilatory depressant effects of the intravenous agents and increase postoperative emesis. Benzodiazepines (eg, midazolam, diazepam) have a slower onset and slower recovery than the barbiturates or propofol and are rarely used for induction of anesthesia. However, preanesthetic administration of benzodiazepines (eg, midazolam) can be used to provide anxiolysis, sedation, and amnesia when used as part of an inhalational, intravenous, or balanced anesthetic technique. [Pg.550]

Inhaled anesthetics currently in use include halo-genated volatile liquids such as desflurane, enflurane, halothane, isoflurane, methoxyflurane, and sevoflurane (Table 11-1). These volatile liquids are all chemically similar, but newer agents such as desflurane and sevoflurane are often used preferentially because they permit a more rapid onset, a faster recovery, and better control during anesthesia compared to older agents such as halothane.915 These volatile liquids likewise represent the primary form of inhaled anesthetics. The only gaseous anesthetic currently in widespread use is nitrous oxide, which is usually reserved for relatively short-term procedures (e.g., tooth extractions). Earlier inhaled anesthetics, such as ether, chloroform, and cyclopropane, are not currently used because they are explosive in nature or produce toxic effects that do not occur with the more modern anesthetic agents. [Pg.136]

Inhaled anesthetics that are relatively insoluble in blood (low blood gas partition coefficient) and brain are eliminated at faster rates than more soluble anesthetics. The washout of nitrous oxide, desflurane, and sevoflurane occurs at a rapid rate, which leads to a more rapid recovery from their anesthetic effects compared to halothane and isoflurane. Halothane is approximately twice as soluble in brain tissue and five times more soluble in blood than nitrous oxide and desflurane its elimination therefore takes place more slowly, and recovery from halothane anesthesia is predictably less rapid. The duration of exposure to the anesthetic can also have a marked effect on the time of recovery, especially in the case of more soluble anesthetics. Accumulation of anesthetics in tissues, including muscle, skin, and fat, increases with continuous inhalation (especially in obese patients), and blood tension may decline slowly during recovery as the anesthetic is gradually eliminated from these tissues. Thus, if exposure to the anesthetic is short, recovery may be rapid even with the more soluble agents. However, after prolonged anesthesia, recovery may be delayed even with anesthetics of moderate solubility such as isoflurane. [Pg.590]

Peripheral neuropathy has been reported in two healthy men anesthetized with 1.25 MAC sevoflurane at 21/minute fresh gas flow for 8 hours. Their average concentrations of compound A were 45 and 28 ppm. Both had had previous minor injuries in the regions in which the neuropathies were reported. The authors suggested that compound A, or other factors associated with sevoflurane anesthesia, may predispose patients to peripheral neuropathy. Both men were volunteers for earlier published studies comparing the nephrotoxic properties of sevoflurane and desflurane, sponsored by Baxter PPD, New Jersey, the manufacturer of desflurane, a rival inhalational anesthetic agent these reports need to be regarded with caution. [Pg.3125]

Desflurane has the lowest bloodigas partition coefficient of all of the modern inhalation anesthetic agents. Rapid onset of anesthesia and short recovery times are associated with its use in horses (Tendillo et al 1997). Mask induction with desflurane in unsedated horses (vaporizer setting 18%, 101/min oxygen flow rate) resulted in... [Pg.294]

The main applications of enantiomeric separation by GC concern precise determination of enantiomeric composition of chiral research chemicals, drugs, intermediates, metabolites, pesticides, flavors and fragrances, etc. CHIRBASE, a database of chiral compounds, provides comprehensive structural, experimental, and bibliographic information on successful and unsuccessful chiral separations, and rule sets for each CSP and information about the processes of chiral separations. According to CHIRBASE, an appropriate CSP is available for almost every racemic mixture of compounds ranging form apolar to polar. Some 22,000 separations of enantiomers, involving 5,500 basic chiral compounds and documented in 2,200 publications, have been achieved by GC. This method is particularly suitable for volatile compounds such as inhalation anesthetic agents, e.g., enflurane, isoflurane, desflurane, and racemic a-ionone. [Pg.454]

Although gas chromatography (GC) is a well established method for the analytical determination of enantiomeric purity, the number of preparative applications is quite limited. Most of these preparative applications by gas chromatography have been recently reviewed [181] and were performed on a relatively small scale. The method is particularly suited for volatile compounds such as the inhalation anesthetic agents enflurane, isoflurane and desflurane [182] and it has also been recently applied to the resolution of racemic a-ionone [183]. The feasibility of separating the enantiomers by gas phase simulated moving bed chromatography has also been demonstrated for the first time and was applied to the anesthetic enflurane (Fig. 6.18) [184]. However, the productivity of the system was relatively low. [Pg.179]

A. Classification and Pharmacokinetics The agents currently used in inhalation anesthesia are nitrous oxide (a gas) and several easily vaporized liquid halogenated hydrocarbons, including halothane, desflurane. enflurane, isoflurane, sevoflurane, and methoxyflurane. They are administered as gases their partial pressure, or tension, in the inhaled air or in blood or other tissue is a measure of them concentration. Since the standard pressure of the total inhaled mixture is atmospheric pressure (760 mm Hg at sea level), the partial pressure may also be expressed as a percentage. Thus 50% nitrous oxide in the inhaled air would have a partial pressure of 380 mm Hg. The speed of induetion of anesthetic effects depends on several factors ... [Pg.230]

As an example of interesting applications of chiral GC, a few preparative scale separations must be mentioned. The large separation factors observed for the chiral inhalation anesthetic agents enflurane, isoflurane, and desflurane allowed preparative-scale separation of the enantiomers required for biomedical studies... [Pg.122]

Several of the agents used as general anesthetics are chiral and used as the racemate. This group includes parentally administered agents such as thiopental and ketamine, and a number of fluorinated agents administered by inhalation, including halothane, enflurane, isoflurane, and desflurane. [Pg.249]

The physical properties of inhalational anesthetics are provided in Table 19.2. Note that desflurane, compared to other agents, has a boiling point that is close to normal room temperature and a vapor pressure that is close to atmospheric pressure at sea level. These properties dictated a new type of vaporizer that heats the agent to 39°C in order to meter the flow of desflurane vapor into the gas flow stream. The minimum alveolar concentration (MAC) of halothane, from Table 19.2 indicates that the agent is the most potent of the agents available today with desflurane as the least potent. [Pg.288]


See other pages where Anesthetics inhalation agents desflurane is mentioned: [Pg.291]    [Pg.304]    [Pg.549]    [Pg.550]    [Pg.597]    [Pg.598]    [Pg.538]    [Pg.290]    [Pg.295]    [Pg.151]    [Pg.374]    [Pg.445]    [Pg.469]    [Pg.354]    [Pg.542]    [Pg.547]    [Pg.594]    [Pg.598]    [Pg.291]    [Pg.900]    [Pg.231]    [Pg.452]    [Pg.202]    [Pg.177]    [Pg.137]   


SEARCH



Anesthetic

Anesthetic agents

Anesthetic agents inhaled

Anesthetics inhalation

Anesthetics inhalational

Desflurane

Desflurane agent

Desflurane inhaled anesthetic

Inhalants anesthetics

Inhaled anesthetics

© 2024 chempedia.info