Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Deprotonated water molecules

When added to water, acids protonate water molecules to form hydro-nium (HjO ) ions and bases deprotonate water molecules to form hydroxide (OH ) ions. The ability of the Bronsted-Lowry theory to account for the presence these ions in solution arises from its recognition of the role played by the solvent and makes it a more general and useful theory than the Arrhenius theory. [Pg.737]

Discernible associative character is operative for divalent 3t5 ions through manganese and the trivalent ions through iron, as is evident from the volumes of activation in Table 4. However, deprotonation of a water molecule enhances the reaction rates by utilising a conjugate base 7T- donation dissociative pathway. As can be seen from Table 4, there is a change in sign of the volume of activation AH. Four-coordinate square-planar molecules also show associative behavior in their reactions. [Pg.170]

The reactivity of the coordinated, deprotonated nucleophile is typically intermediate between that of the un-ionized and ionized forms of the nucleophile. Carboxypeptidase (Chapter 5) contains an active site Zn, which facilitates deprotonation of a water molecule in this manner. [Pg.512]

If activity increases dramatically as pH is increased, catalysis may depend on a deprotonated group that may normally act as a general base, accepting a proton from the substrate or a water molecule, for example (a). Protonation of this group at lower pH prevents it from accepting another proton (from the substrate or water, for example). [Pg.525]

The breakthrough came with stopped-flow techniques, applied first by Ritchie and Wright (1971a, 1981b). Stopped-flow measurements allow evaluation of observed rates in more detail. It was possible to show that the forward reaction occured not only with hydroxide ions but also with water molecules, followed by fast deprotonation by hydroxide ions. The mechanism of the latter reaction will be discussed in Sections 5.2 and 5.3. [Pg.93]

Basically the kinetic results are consistent with the first (rapid) reaction being the addition of a hydroxide ion to the diazonium ion followed by the very fast deprotonation of the (Z)-diazohydroxide to give the (Z)-diazoate (steps 1 and 2 in Scheme 5-14). In addition, however, the stopped-flow experiments showed that the diazonium ion also reacts with the water molecule, initially forming the conjugate acid of the (Z)-diazohydroxide (ArN2OH2), which is then very rapidly deprotonated (reaction 1 in Scheme 5-14). The rate of the relatively slow (Z/E)-isomerization (reaction 5 in Scheme 5-14) can in general be measured by conventional spectrophotometry. [Pg.100]

These ions then precipitate as a hydrated iron(III) oxide, Fe203-H20, the brown, insoluble substance that we call rust. The oxide ions can be regarded as coming from deprotonation of water molecules and as immediately forming the hydrated solid by precipitation with the Fe3+ ions produced in reaction F ... [Pg.636]

The conjugate base of the latter is the actual nucleophile. Thus the increase of activity up to pH 7.3 accounts for the deprotonation of this water molecule while the decrease in activity above this pH is related to the reduced ability of a phosphate to compete with a hydroxide for coordination to the metal center. This is a common feature of many catalysts with similar mechanisms. [Pg.229]

Figure 5. Cartoon models of the reaction of methanol with oxygen on Cu(llO). 1 A methanol molecule arrives from the gas phase onto the surface with islands of p(2xl) CuO (the open circles represent oxygen, cross-hatched are Cu). 2,3 Methanol diffuses on the surface in a weakly bound molecular state and reacts with a terminal oxygen atom, which deprotonates the molecule in 4 to form a terminal hydroxy group and a methoxy group. Another molecule can react with this to produce water, which desorbs (5-7). Panel 8 shows decomposition of the methoxy to produce a hydrogen atom (small filled circle) and formaldehyde (large filled circle), which desorbs in panel 9. The active site lost in panel 6 is proposed to be regenerated by the diffusion of the terminal Cu atom away from the island in panel 7. Figure 5. Cartoon models of the reaction of methanol with oxygen on Cu(llO). 1 A methanol molecule arrives from the gas phase onto the surface with islands of p(2xl) CuO (the open circles represent oxygen, cross-hatched are Cu). 2,3 Methanol diffuses on the surface in a weakly bound molecular state and reacts with a terminal oxygen atom, which deprotonates the molecule in 4 to form a terminal hydroxy group and a methoxy group. Another molecule can react with this to produce water, which desorbs (5-7). Panel 8 shows decomposition of the methoxy to produce a hydrogen atom (small filled circle) and formaldehyde (large filled circle), which desorbs in panel 9. The active site lost in panel 6 is proposed to be regenerated by the diffusion of the terminal Cu atom away from the island in panel 7.
Deprotonation of the H2O2 molecule on the Ti(lV) site itself (see Scheme lb) is another mechanism leading to Ti-hydroperoxidic species. The latter mechanism can also occur either on a perfect [Ti-(0-Si)4] site by rupture of one out of the four Ti - O - Si bridges or on a defective [(H-0)-Ti-(0-Si)3j site by ehmination of a water molecule (see Schemes 2a and 2b and the discussion of Sect. 3.8). [Pg.56]

In the case of the rhenium aqua-ion [Re(OH2)3(CO)3]+ (33b) the question has been posed whether complex-anion can be considered to be a Bronsted acid. Titrations with hydroxide in water yielded a pKa value of 7.55 which is exceptionally low for a +1 cation. After the deprotonation of one coordinated water molecule, polymer formation over (/r-OH) bridges was initiated and the two compounds [Re3(/T3-OH)(/T-OH)3(CO)9r (35) and [Re2(/i-OH)3(CO)6] were (36) isolated and structurally characterized (Scheme 6). [Pg.164]

D2EF1PA is thus a poor extractant for nickel as this shows a preference for a pseudo-octahedral structure in which two axial ligands are either fully protonated extractant molecules, fully protonated extractant dimers, or water molecules depending on extractant concentration, and four equatorial sites are occupied by deprotonated isolated D2EHPA molecules. [Pg.786]

A strong decrease in relaxivity (from 12.8mM-1s-1 to 2mM-1s-1) between pH 6 and 11 has been reported for a positively charged macrocyclic Gdm complex (Scheme 10), which was explained by the successive deprotonation of the coordinated water molecules.167 Luminescence lifetime measurements of a Yb111 analogue proved that the complex possesses three bound waters at pH 5.5. Above pH 11, a di-oxo-bridged dimer is formed that has no more bound water or OH groups. [Pg.867]

Even more efficient bimetallic cooperativity was achieved by the dinuclear complex 36 [53]. It was demonstrated to cleave 2, 3 -cAMP (298 K) and ApA (323 K) with high efficiency at pH 6, which results in 300-500-fold rate increase compared to the mononuclear complex Cu(II)-[9]aneN at pH 7.3. The pH-metric study showed two overlapped deprotonations of the metal-bound water molecules near pH 6. The observed bell-shaped pH-rate profiles indicate that the monohydroxy form is the active species. The proposed mechanism for both 2, 3 -cAMP and ApA hydrolysis consists of a double Lewis-acid activation of the substrates, while the metal-bound hydroxide acts as general base for activating the nucleophilic 2 -OH group in the case of ApA (36a). Based on the 1000-fold higher activity of the dinuclear complex toward 2, 3 -cAMP, the authors suggest nucleophilic catalysis of the Cu(II)-OH unit in 36b. The latter mechanism is comparable to those of protein phosphatase 1 and fructose 1,6-diphosphatase. [Pg.229]

Figure 3.4. Two types of isomorphous substitution. The middle structures are two-dimensional representations of clay without isomorphous substitution. On the left is an isomorphous substitution of Mg for A1 in the aluminum octahedral sheet. On the right is isomorphous A1 substitution for Si in the silicon tetrahedral sheet. Clays are three-dimensional and -OH on the surface may be protonated or deprotonated depending on the pH of the surrounding soil solution. There will be additional water molecules and ions between many clay structures. Note that clay structures are three-dimensional and these representations are not intended to accurately represent the three-dimensional nature nor the actual bond lengths also, the brackets are not intended to represent crystal unit cells. Figure 3.4. Two types of isomorphous substitution. The middle structures are two-dimensional representations of clay without isomorphous substitution. On the left is an isomorphous substitution of Mg for A1 in the aluminum octahedral sheet. On the right is isomorphous A1 substitution for Si in the silicon tetrahedral sheet. Clays are three-dimensional and -OH on the surface may be protonated or deprotonated depending on the pH of the surrounding soil solution. There will be additional water molecules and ions between many clay structures. Note that clay structures are three-dimensional and these representations are not intended to accurately represent the three-dimensional nature nor the actual bond lengths also, the brackets are not intended to represent crystal unit cells.
Cisplatin diaqua is very reactive, but the deprotonated hydroxo forms are usually considered to be relatively inert, therefore the acidity of the coordinated water molecules in aqua complexes can be directly relevant to their reactivity with target molecules. The pKa values of some Pt-aqua complexes are listed in Table II. [Pg.189]

When a metal oxide surface is exposed to water, adsorption of water molecules takes place as shown in Equation 2.1. Cation sites can be considered as Lewis acids and interact with donor molecules like water through a combination of ion-dipole attraction and orbital overlap. Subsequent protonation and deprotonation of the surface hydroxyls produce charged oxide surfaces as shown in Equation 2.2 and Equation 2.3, respectively ... [Pg.48]

The essential features of the catalytic cycle are summarized in Figure 12.6. After binding of NAD+ the water molecule is displaced from the zinc atom by the incoming alcohol substrate. Deprotonation of the coordinated alcohol yields a zinc alkoxide intermediate, which then undergoes hydride transfer to NAD+ to give the zinc-bound aldehyde and NADH. A water molecule then displaces the aldehyde to regenerate the original catalytic zinc centre, and finally NADH is released to complete the catalytic cycle. [Pg.202]

Figure 15.2 Reaction mechanism of urease. Ni 1 binds urea and acts as a Lewis acid to polarise the carbonyl group, making its carbon more electrophilic, while Ni 2 facilitates deprotonation of a bound water molecule to generate a nucleophilic hydroxyl species. (From Ragsdale, 1998. Copyright 1998, with permission from Elsevier.)... Figure 15.2 Reaction mechanism of urease. Ni 1 binds urea and acts as a Lewis acid to polarise the carbonyl group, making its carbon more electrophilic, while Ni 2 facilitates deprotonation of a bound water molecule to generate a nucleophilic hydroxyl species. (From Ragsdale, 1998. Copyright 1998, with permission from Elsevier.)...

See other pages where Deprotonated water molecules is mentioned: [Pg.16]    [Pg.130]    [Pg.314]    [Pg.16]    [Pg.130]    [Pg.314]    [Pg.517]    [Pg.1131]    [Pg.20]    [Pg.71]    [Pg.290]    [Pg.14]    [Pg.1161]    [Pg.1182]    [Pg.1227]    [Pg.51]    [Pg.814]    [Pg.867]    [Pg.940]    [Pg.196]    [Pg.216]    [Pg.249]    [Pg.207]    [Pg.157]    [Pg.164]    [Pg.62]    [Pg.48]    [Pg.11]    [Pg.31]    [Pg.168]    [Pg.176]    [Pg.200]    [Pg.207]    [Pg.228]   
See also in sourсe #XX -- [ Pg.96 ]




SEARCH



Deprotonated molecule

Deprotonation of water molecules

Water deprotonation

Water molecule

Water molecule molecules

© 2024 chempedia.info