Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Density functional theory , solid-fluid

Density functional theory from statistical mechanics is a means to describe the thermodynamics of the solid phase with information about the fluid [17-19]. In density functional theory, one makes an ansatz about the structure of the solid, usually describing the particle positions by Gaussian distributions around their lattice sites. The free... [Pg.334]

The entropically driven disorder-order transition in hard-sphere fluids was originally discovered in computer simulations [58, 59]. The development of colloidal suspensions behaving as hard spheres (i.e., having negligible Hamaker constants, see Section VI-3) provided the means to experimentally verify the transition. Experimental data on the nucleation of hard-sphere colloidal crystals [60] allows one to extract the hard-sphere solid-liquid interfacial tension, 7 = 0.55 0.02k T/o, where a is the hard-sphere diameter [61]. This value agrees well with that found from density functional theory, 7 = 0.6 0.02k r/a 2 [21] (Section IX-2A). [Pg.337]

The present chapter is organized as follows. We focus first on a simple model of a nonuniform associating fluid with spherically symmetric associative forces between species. This model serves us to demonstrate the application of so-called first-order (singlet) and second-order (pair) integral equations for the density profile. Some examples of the solution of these equations for associating fluids in contact with structureless and crystalline solid surfaces are presented. Then we discuss one version of the density functional theory for a model of associating hard spheres. All aforementioned issues are discussed in Sec. II. [Pg.170]

In the density functional theory, the structure and thermodynamics of confined fluids are predicted from the intermolecular potentials of the fluid-fluid and solid-fluid interactions To... [Pg.598]

Figure 10. Vapor-liquid equilibria for an argon-krypton mixture (modeled as a Lennard-Jones mixture) for the bulk fluid (R = >) and for a cylindrical pore of radius R = / /Oaa = 2.5. The dotted and dashed lines are from a crude form of density functional theory (the local density approximation, LDA). The points and solid lines are molecular dynamics results for the pore. Reprinted with permission from W. L. Jorgensen and J. Tirado-Rives, J. Am. Chem. Soc. Figure 10. Vapor-liquid equilibria for an argon-krypton mixture (modeled as a Lennard-Jones mixture) for the bulk fluid (R = >) and for a cylindrical pore of radius R = / /Oaa = 2.5. The dotted and dashed lines are from a crude form of density functional theory (the local density approximation, LDA). The points and solid lines are molecular dynamics results for the pore. Reprinted with permission from W. L. Jorgensen and J. Tirado-Rives, J. Am. Chem. Soc.
An alternative approach is by the application of an approximate theory. At present, the most useful theoretical treatment for the estimation of the equilibrium properties is generally considered to be the density functional theory (DFT). This involves the derivation of the density profile, p(r), of the inhomogeneous fluid at a solid surface or within a given set of pores. Once p(r) is known, the adsorption isotherm and other thermodynamic properties, such as the energy of adsorption, can be calculated. The advantage of DFT is its speed and relative ease of calculation, but there is a risk of oversimplification through the introduction of approximate forms of the required functionals (Gubbins, 1997). [Pg.22]

For further reading, see Fundamentals of Inhomogeneous Fluids. D. Henderson, Ed. Marcel Dekker (1992). (Chapter 5 of this book, by R. Evans, describes the application of density functional theory) The Liquid-Solid Interface at High Resolution, Faraday Discuss. Roy. Soc. Chem. (London) (1992).)... [Pg.166]

Over the years, vapour adsorption and condensation in porous materials continue to attract a great deal of attention because of (i) the fundamental physics of low-dimension systems due to confinement and (ii) the practical applications in the field of porous solids characterisation. Particularly, the specific surface area, as in the well-known BET model [I], is obtained from an adsorbed amount of fluid that is assumed to cover uniformly the pore wall of the porous material. From a more fundamental viewpoint, the interest in studying the thickness of the adsorbed film as a function of the pressure (i.e. t = f (P/Po) the so-called t-plot) is linked to the effort in describing the capillary condensation phenomenon i.e. the gas-Fadsorbed film to liquid transition of the confined fluid. Indeed, microscopic and mesoscopic approaches underline the importance of the stability of such a film on the thermodynamical equilibrium of the confined fluid [2-3], In simple pore geometry (slit or cylinder), numerous simulation works and theoretical studies (mainly Density Functional Theory) have shown that the (equilibrium) pressure for the gas/liquid phase transition in pores greater than 8 nm is correctly predicted by the Kelvin equation provided the pore radius Ro is replaced by the core radius of the gas phase i.e. (Ro -1) [4]. Thirty year ago, Saam and Cole [5] proposed that the capillary condensation transition is driven by the instability of the adsorbed film at the surface of an infinite... [Pg.35]

Essential progress has been made recently in the area of molecular level modeling of capillary condensation. The methods of grand canonical Monte Carlo (GCMC) simulations [4], molecular dynamics (MD) [5], and density functional theory (DFT) [6] are capable of generating hysteresis loops for sorption of simple fluids in model pores. In our previous publications (see [7] and references therein), we have shown that the non-local density functional theory (NLDFT) with properly chosen parameters of fluid-fluid and fluid-solid intermolecular interactions quantitatively predicts desorption branches of hysteretic isotherms of nitrogen and argon on reference MCM-41 samples with pore channels narrower than 5 nm. [Pg.51]

The non-local density functional theory (NLDFT) with properly chosen parameters of fluid-fluid and fluid-solid intermolecular interactions quantitatively predicts both adsorption and desorption branches of capillary condensation isotherms on MCM-41 materials with the pore sizes from 5 to 10 nm. Both experimental branches can be used for calculating the pore size distributions in this pore size range. However for the samples with smaller pores, the desorption branch has an advantage of being theoretically accurate. Thus, we recommend to use the desorption isotherms for estimating the pore size distributions in mesoporous materials of MCM-41 type, provided that the pore networking effects are absent. [Pg.59]

A novel approach is reported for the accurate evaluation of pore size distributions for mesoporous and microporous silicas from nitrogen adsorption data. The model used is a hybrid combination of statistical mechanical calculations and experimental observations for macroporous silicas and for MCM-41 ordered mesoporous silicas, which are regarded as the best model mesoporous solids currently available. Thus, an accurate reference isotherm has been developed from extensive experimental observations and surface heterogeneity analysis by density functional theory the critical pore filling pressures have been determined as a function of the pore size from adsorption isotherms on MCM-41 materials well characterized by independent X-ray techniques and finally, the important variation of the pore fluid density with pressure and pore size has been accounted for by density functional theory calculations. The pore size distribution for an unknown sample is extracted from its experimental nitrogen isotherm by inversion of the integral equation of adsorption using the hybrid models as the kernel matrix. The approach reported in the current study opens new opportunities in characterization of mesoporous and microporous-mesoporous materials. [Pg.71]

When the pore diameter of a solid is no more than half an order of magnitude larger than that of an adsorbed molecule, the properties of the confined fluid are considerably different to those of the bulk. Although the overall densities of the bulk and confined fluid are similar, it is their degrees of freedom that change [1]. Thus mathematical treatments such as Density Functional Theory and Monte-Carlo Simulation [2] agree that on the inside of such micropores, the local density of a confined fluid highly depends on the radial position of the adsorbed molecules. [Pg.289]

The computational procedures now used in the application of density functional theory and molecular simulation for the prediction and analysis of physisorption isotherms are based on the statistical mechanics of confined fluids [14]. These important advances are described in several chapters of this book and therefore the present introductory remarks are confined to a few general comments. Whichever computational procedure is adopted [39, 40], it is first necessary to define a 3-D model of the pore structure within a sohd of known and uniform composition [14]. It has been customary to assume that the pores of different width are aU of the same shape (e.g., slits in activated carbons). Further assumptions made by many investigators are that the filling or emptying of each group of pores can occur independently and reversibly, that the internal surface is uniform and that the solid-fluid and fluid-fluid interactions can be expressed in terms of standard potential functions [14],... [Pg.13]

The formalism of density functional theory (DFT) has received considerable attention as a way to describe the adsorption process at the fluid-solid interfece. The older approach was to treat the adsorbate as a separate, two-dimensional phase existing in equilibrium with the bulk gas phase. This model works well... [Pg.153]

All three areas will be addressed here. The application of classical density functional theory has led to some of the most important recent theoretical advances in SFE and these have been the subject of several authoritative review articles [10-16]. On the other hand, we know of no recent comprehensive review addressing theoretical approaches other than density functional theories (DFT) and the other two subject areas, particularly the last one, and it was this that motivated us to write this chapter. We hope that the somewhat broader coverage of molecular modeling research in SFE given in this chapter will be of benefit to researchers new to the field. We should mention that this Chapter is written from a perspective that is more strongly influenced by liquid-state statistical mechanics than by solid-state theory. The interests of the authors in the problem at hand are an outgrowth of their previous work on phase equilibrium in fluids and fluid mixtures. [Pg.115]

Although most of the studies of this model have focused on the fluid phase in connection with the theory of electrolyte solutions, its solid-fluid phase behavior has been the subject of two recent computer simulation studies in addition to theoretical studies. Smit et al. [272] and Vega et al. [142] have made MC simulation studies to determine the solid-fluid and solid-solid equilibria in this model. Two solid phases are encountered. At low temperature the substitutionally ordered CsCl structure is stable due to the influence of the coulombic interactions under these conditions. At high temperatures where packing of equal-sized hard spheres determines the stability a substitutionally disordered fee structure is stable. There is a triple point where the fluid and two solid phases coexist in addition to a vapor-liquid-solid triple point. This behavior can be qualitatively described by using the cell theory for the solid phase and perturbation theory for the fluid phase [142]. Predictions from density functional theory [273] are less accurate for this system. [Pg.170]


See other pages where Density functional theory , solid-fluid is mentioned: [Pg.191]    [Pg.130]    [Pg.598]    [Pg.599]    [Pg.602]    [Pg.154]    [Pg.177]    [Pg.291]    [Pg.423]    [Pg.433]    [Pg.546]    [Pg.240]    [Pg.52]    [Pg.83]    [Pg.375]    [Pg.535]    [Pg.383]    [Pg.143]   


SEARCH



Density solid densities

Fluid density

Fluids density functional theory

Functional solids

Solid theory

© 2024 chempedia.info