Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Density electronic structures

There are a variety of other approaches to understanding the electronic structure of crystals. Most of them rely on a density functional approach, with or without the pseudopotential, and use different bases. For example, instead of a plane wave basis, one might write a basis composed of atomic-like orbitals ... [Pg.112]

Another usefiil quantity is defining the electronic structure of a solid is the electronic density of states. In general the density of states can be defined as... [Pg.115]

The most elementary mean-field models of electronic structure introduce a potential that an electron at r would experience if it were interacting with a spatially averaged electrostatic charge density arising from the N- 1 remaining electrons ... [Pg.2159]

Parr B 2000 webpage http //net.chem.unc.edu/facultv/rap/cfrap01. html Professor Parr was among the first to push the density functional theory of Hohenberg and Kohn to bring it into the mainstream of electronic structure theory. For a good overview, see the book ... [Pg.2198]

Iditional importance is that the vibrational modes are dependent upon the reciprocal e vector k. As with calculations of the electronic structure of periodic lattices these cal-ions are usually performed by selecting a suitable set of points from within the Brillouin. For periodic solids it is necessary to take this periodicity into account the effect on the id-derivative matrix is that each element x] needs to be multiplied by the phase factor k-r y). A phonon dispersion curve indicates how the phonon frequencies vary over tlie luin zone, an example being shown in Figure 5.37. The phonon density of states is ariation in the number of frequencies as a function of frequency. A purely transverse ition is one where the displacement of the atoms is perpendicular to the direction of on of the wave in a pmely longitudinal vibration tlie atomic displacements are in the ition of the wave motion. Such motions can be observed in simple systems (e.g. those contain just one or two atoms per unit cell) but for general three-dimensional lattices of the vibrations are a mixture of transverse and longitudinal motions, the exceptions... [Pg.312]

W Kohn. Density functional theory of electronic structure. J Phys Chem 100 12974-12980, 1996. [Pg.411]

J Li, L Noodleman, DA Case. Electronic structure calculations Density functional methods with applications to transition metal complexes. In EIS Lever, ABP Lever, eds. Inorganic Electronic Structure and Spectroscopy, Vol. 1. Methodology. New York Wiley, 1999, pp 661-724. [Pg.411]

There are at least four kinds of information available from an Auger spectrum. The simplest and by far most frequently used is qualitative information, indicating which elements are present within the sampling volume of the measurement. Next there is quantitative information, which requires a little more care during acquisition to make it extractable, and a little more effort to extract it, but which tells how much of each of the elements is present. Third, there is chemical information which shows the chemical state in which these elements are present. Last, but by far the least used, there is information on the electronic structure of the material, such as the valance-band density of states that is folded into the line shape of transitions involving valance-band electrons. There are considerations to keep in mind in extracting each of these kinds of information. [Pg.317]

We have extended the linear combination of Gaussian-type orbitals local-density functional approach to calculate the total energies and electronic structures of helical chain polymers[35]. This method was originally developed for molecular systems[36-40], and extended to two-dimensionally periodic sys-tems[41,42] and chain polymers[34j. The one-electron wavefunctions here are constructed from a linear combination of Bloch functions c>>, which are in turn constructed from a linear combination of nuclear-centered Gaussian-type orbitals Xylr) (in ihis case, products of Gaussians and the real solid spherical harmonics). The one-electron density matrix is given by... [Pg.42]

The optimised interlayer distance of a concentric bilayered CNT by density-functional theory treatment was calculated to be 3.39 A [23] compared with the experimental value of 3.4 A [24]. Modification of the electronic structure (especially metallic state) due to the inner tube has been examined for two kinds of models of concentric bilayered CNT, (5, 5)-(10, 10) and (9, 0)-(18, 0), in the framework of the Huckel-type treatment [25]. The stacked layer patterns considered are illustrated in Fig. 8. It has been predicted that metallic property would not change within this stacking mode due to symmetry reason, which is almost similar to the case in the interlayer interaction of two graphene sheets [26]. Moreover, in the three-dimensional graphite, the interlayer distance of which is 3.35 A [27], there is only a slight overlapping (0.03-0.04 eV) of the HO and the LU bands at the Fermi level of a sheet of graphite plane [28,29],... [Pg.47]

Recently, a third class of electronic structure methods have come into wide use density functional methods. These DFT methods are similar to ab initio methods in many ways. DFT calculations require about the same amount of computation resources as Hartree-Fock theory, the least expensive ab initio method. [Pg.6]

Ab initio molecular orbital theory is concerned with predicting the properties of atomic and molecular systems. It is based upon the fundamental laws of quantum mechanics and uses a variety of mathematical transformation and approximation techniques to solve the fundamental equations. This appendix provides an introductory overview of the theory underlying ab initio electronic structure methods. The final section provides a similar overview of the theory underlying Density Functional Theory methods. [Pg.253]

Edit Output File icon xlix effective core potentials 101 electron affinity 142 electron correlation 6, 114,118 electron density 165 electron spin 259 electronic structure theory 3 electrostatic potential-derived charges CHelpG 196... [Pg.298]

Examine the geometry of the most stable radical. Is the bonding in the aromatic ring fuUy delocalized (compare to model alpha-tocopherol), or is it localized Also, examine the spin density surface of the most stable radical. Is the unpaired electron localized on the carbon (oxygen) where bond cleavage occurred, or is it delocalized Draw all of the resonance contributors necessary for a full description of the radical s geometry and electronic structure. [Pg.221]

From electronic structure theory it is known that the repulsion is due to overlap of the electronic wave functions, and furthermore that the electron density falls off approximately exponentially with the distance from the nucleus (the exact wave function for the hydrogen atom is an exponential function). There is therefore some justification for choosing the repulsive part as an exponential function. The general form of the Exponential - R Ey w function, also known as a ""Buckingham " or ""Hill" type potential is... [Pg.19]

Several calculations of the electronic structure of isoindoles have Ijeen published, and the distribution of charge density around the isoindole nucleus calculated by these methods is summarized in X able I. A common prediction of the calculations, which are based on tlie LCAO-MO method or the frontier electron concept, is the relatively high electron density to bo found at position 1, and the expectation, thei efore, i.s that electrophilic substitution on carbon... [Pg.115]


See other pages where Density electronic structures is mentioned: [Pg.97]    [Pg.97]    [Pg.123]    [Pg.1957]    [Pg.2228]    [Pg.55]    [Pg.146]    [Pg.172]    [Pg.173]    [Pg.177]    [Pg.180]    [Pg.182]    [Pg.909]    [Pg.217]    [Pg.395]    [Pg.397]    [Pg.417]    [Pg.94]    [Pg.286]    [Pg.75]    [Pg.4]    [Pg.37]    [Pg.89]    [Pg.857]    [Pg.130]    [Pg.165]    [Pg.166]    [Pg.619]    [Pg.229]    [Pg.4]    [Pg.42]    [Pg.3]    [Pg.40]   
See also in sourсe #XX -- [ Pg.323 , Pg.328 , Pg.342 , Pg.371 ]




SEARCH



Charge density waves . high electronic structure

Crystal structure determinations electron spin density

Crystallographic structure refinement electron density, molecular

Density functional theory electronic structure calculations

Density functional theory electronic structure methods

Electron density distributions molecular structure aspect

Electron density from structure factors

Electron density structure

Electron density structure

Electron density, carbohydrate structure

Electron-density Maps and Refinement of Protein Structures

Electronic Structure Calculations Via Density Functional Theory

Electronic Structure of Naked, Ligated and Supported Transition Metal Clusters from First Principles Density Functional Calculations

Electronic structure computations density functional tight-binding

Electronic structure density matrices

Electronic structure density-functional theory

Electronic structure local spin-density approximation

Electronic structure methods local density approximation

Electronic structure methods periodic density functional theory

Electronic structure representation reduced density matrices

Gradient corrected density functional theory electronic structure

Magnesium: density electronic structure

Metal surfaces, electronic structure density approximation

Optimized structure and valence-electron density of tetragonal ceria-zirconia solid solutions

Structural density

Structure Fourier transform: electron density

Structure and Electron-density Distribution

Structure determination Fourier transform: electron density

© 2024 chempedia.info