Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electronic structure density functional theory calculations

Finite Element Method in Density Functional Theory Electronic Structure Calculations... [Pg.199]

The optimised interlayer distance of a concentric bilayered CNT by density-functional theory treatment was calculated to be 3.39 A [23] compared with the experimental value of 3.4 A [24]. Modification of the electronic structure (especially metallic state) due to the inner tube has been examined for two kinds of models of concentric bilayered CNT, (5, 5)-(10, 10) and (9, 0)-(18, 0), in the framework of the Huckel-type treatment [25]. The stacked layer patterns considered are illustrated in Fig. 8. It has been predicted that metallic property would not change within this stacking mode due to symmetry reason, which is almost similar to the case in the interlayer interaction of two graphene sheets [26]. Moreover, in the three-dimensional graphite, the interlayer distance of which is 3.35 A [27], there is only a slight overlapping (0.03-0.04 eV) of the HO and the LU bands at the Fermi level of a sheet of graphite plane [28,29],... [Pg.47]

The measured electronic structure, occupied or unoccupied, provides the fullest information when also combined with theory. Electronic structure calculations in surface chemistry have advanced immensely in the past decades and have now reached a level of accuracy and predictive power so as to provide a very strong complement to experiment. Indeed, the type of theoretical modeling that will be employed and presented here can be likened to computer experiments, where it can be assumed that spectra can be computed reliably and thus computed spectra for different models of the surface adsorption used to determine which structural model is the most likely. In the present chapter, we will thus consistently use the interplay between experiment and theory in our analysis of the interaction between adsorbate and substrate. Before discussing what quantities are of interest to compute in the analysis of the surface chemical bond, we will briefly discuss and justify our choice of Density Functional Theory (DFT) as approach to spectrum and chemisorption calculations. [Pg.61]

Computational studies investigate reaction mechanisms and pathways by constructing potential energy profiles. This involves exploring reaction thermodynamics and kinetics, by examining reactants and products as well as the transition states geometries and activation energy barriers. Like those seen in structure prediction, most current studies implement effective core potentials and density functional theory to perform calculations.However, ECPs can be paired with MP2 to account for electron correlation thus far, this approach has only been used for smaller chemical systems. " Eurthermore, solvation methods such as the polarizable continuum model can be employed to examine... [Pg.274]

The ab initio methods used by most investigators include Hartree-Fock (FFF) and Density Functional Theory (DFT) [6, 7]. An ab initio method typically uses one of many basis sets for the solution of a particular problem. These basis sets are discussed in considerable detail in references [1] and [8]. DFT is based on the proof that the ground state electronic energy is determined completely by the electron density [9]. Thus, there is a direct relationship between electron density and the energy of a system. DFT calculations are extremely popular, as they provide reliable molecular structures and are considerably faster than FFF methods where correlation corrections (MP2) are included. Although intermolecular interactions in ion-pairs are dominated by dispersion interactions, DFT (B3LYP) theory lacks this term [10-14]. FFowever, DFT theory is quite successful in representing molecular structure, which is usually a primary concern. [Pg.153]

It is clear that an ah initio calculation of the ground state of AF Cr, based on actual experimental data on the magnetic structure, would be at the moment absolutely unfeasible. That is why most calculations are performed for a vector Q = 2ir/a (1,0,0). In this case Cr has a CsCl unit cell. The local magnetic moments at different atoms are equal in magnitude but opposite in direction. Such an approach is used, in particular, in papers [2, 3, 4], in which the electronic structure of Cr is calculated within the framework of spin density functional theory. Our paper [6] is devoted to the study of the influence of relativistic effects on the electronic structure of chromium. The results of calculations demonstrate that the relativistic effects completely change the structure of the Or electron spectrum, which leads to its anisotropy for the directions being identical in the non-relativistic approach. [Pg.139]

Fischer-type carbene complexes, generally characterized by the formula (CO)5M=C(X)R (M=Cr, Mo, W X=7r-donor substitutent, R=alkyl, aryl or unsaturated alkenyl and alkynyl), have been known now for about 40 years. They have been widely used in synthetic reactions [37,51-58] and show a very good reactivity especially in cycloaddition reactions [59-64]. As described above, Fischer-type carbene complexes are characterized by a formal metal-carbon double bond to a low-valent transition metal which is usually stabilized by 7r-acceptor substituents such as CO, PPh3 or Cp. The electronic structure of the metal-carbene bond is of great interest because it determines the reactivity of the complex [65-68]. Several theoretical studies have addressed this problem by means of semiempirical [69-73], Hartree-Fock (HF) [74-79] and post-HF [80-83] calculations and lately also by density functional theory (DFT) calculations [67, 84-94]. Often these studies also compared Fischer-type and... [Pg.6]

Density-functional theory is best known as the basis for electronic structure calculations. A variant of this theory can be used to calculate the structure of inhomogeneous fluids [35] the free energy of the fluid is expressed as a functional of the density of the various components a theorem asserts that this functional attains its minimum for the true density profiles. [Pg.184]

The determination of the electronic structure of lanthanide-doped materials and the prediction of the optical properties are not trivial tasks. The standard ligand field models lack predictive power and undergoes parametric uncertainty at low symmetry, while customary computation methods, such as DFT, cannot be used in a routine manner for ligand field on lanthanide accounts. The ligand field density functional theory (LFDFT) algorithm23-30 consists of a customized conduct of nonempirical DFT calculations, extracting reliable parameters that can be used in further numeric experiments, relevant for the prediction in luminescent materials science.31 These series of parameters, which have to be determined in order to analyze the problem of two-open-shell 4f and 5d electrons in lanthanide materials, are as follows. [Pg.2]

Group 2 complexes are formally electron deficient and conformationally floppy only small energies (often only 1-2 kcal mol-1) are required to alter their geometries by large amounts (e.g., bond angles by 20° or more). In such cases, the inclusion of electron-correlation effects becomes critical to an accurate description of the molecules structures. Both HF/MP2 and density functional theory (DFT) methods have been applied to organoalkaline earth compounds. DFT approaches, which implicitly incorporate electron correlation in a computationally efficient form, are generally the more widely used. Molecular orbital calculations that successfully reproduce bent... [Pg.137]


See other pages where Electronic structure density functional theory calculations is mentioned: [Pg.33]    [Pg.33]    [Pg.294]    [Pg.538]    [Pg.185]    [Pg.332]    [Pg.261]    [Pg.504]    [Pg.66]    [Pg.200]    [Pg.270]    [Pg.172]    [Pg.191]    [Pg.714]    [Pg.97]    [Pg.376]    [Pg.146]    [Pg.258]    [Pg.395]    [Pg.857]    [Pg.130]    [Pg.3]    [Pg.457]    [Pg.46]    [Pg.6]    [Pg.121]    [Pg.354]    [Pg.219]    [Pg.139]    [Pg.213]    [Pg.249]    [Pg.239]    [Pg.69]    [Pg.103]    [Pg.175]    [Pg.281]    [Pg.688]    [Pg.373]    [Pg.200]    [Pg.329]    [Pg.335]    [Pg.504]   
See also in sourсe #XX -- [ Pg.967 ]




SEARCH



4.14. Calculated electronic structure

Calculated electron densities

Density calculating

Density calculations

Density electronic structures

Density functional calculation calculations

Density functional calculations

Density functional theory calculations

Density functional theory electrons

Electron densities, calculation

Electron density function

Electron density functionals

Electron density structure

Electron functionalization

Electronic Structure Calculations Via Density Functional Theory

Electronic calculation

Electronic density function

Electronic structure calculations

Electronic structure density-functional theory

Structural density

Structural theory

Structure calculations

Structure theory

Theory calculation

© 2024 chempedia.info