Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Exact wave functions

Molecular orbitals are not unique. The same exact wave function could be expressed an infinite number of ways with different, but equivalent orbitals. Two commonly used sets of orbitals are localized orbitals and symmetry-adapted orbitals (also called canonical orbitals). Localized orbitals are sometimes used because they look very much like a chemist s qualitative models of molecular bonds, lone-pair electrons, core electrons, and the like. Symmetry-adapted orbitals are more commonly used because they allow the calculation to be executed much more quickly for high-symmetry molecules. Localized orbitals can give the fastest calculations for very large molecules without symmetry due to many long-distance interactions becoming negligible. [Pg.125]

The problem has now become how to solve for the set of molecular orbital expansion coefficients, c. . Hartree-Fock theory takes advantage of the variational principle, which says that for the ground state of any antisymmetric normalized function of the electronic coordinates, which we will denote H, then the expectation value for the energy corresponding to E will always be greater than the energy for the exact wave function ... [Pg.262]

From electronic structure theory it is known that the repulsion is due to overlap of the electronic wave functions, and furthermore that the electron density falls off approximately exponentially with the distance from the nucleus (the exact wave function for the hydrogen atom is an exponential function). There is therefore some justification for choosing the repulsive part as an exponential function. The general form of the Exponential - R Ey w function, also known as a ""Buckingham " or ""Hill" type potential is... [Pg.19]

Without introducing any approximations, the total (exact) wave function can be written as an expansion in the complete set of electronic functions, with the expansion coefficients being functions of the nuclear coordinates. [Pg.54]

The electron-electron repulsion operator has a singularity for r 12 = 0 which results in the exact wave function having a cusp (discontinuous derivative).- ... [Pg.140]

In other words, the exact wave function behaves asymptotically as a constant 4- l/2ri2 when ri2 is small. It would therefore seem natural that the interelectronic distance would be a necessary variable for describing electron correlation. For two-electron systems, extremely accurate wave functions may be generated by taking a trial wave function consisting of an orbital product times an expansion in electron coordinates such as... [Pg.140]

Ho is the normal electronic Hamilton operator, and the perturbations are described by the operators Pi and P2, with A determining the strength. Based on an expansion in exact wave functions, Rayleigh-Schrddinger perturbation theory (section 4.8) gives the first- and second-order energy collections. [Pg.240]

In such cases the expression from fii st-order perturbation theory (10.18) yields a result identical to the first derivative of the energy with respect to A. For wave functions which are not completely optimized with respect to all parameters (Cl, MP or CC), the Hellmann-Feynman theorem does not hold, and a first-order property calculated as an expectation value will not be identical to that obtained as an energy derivative. Since the Hellmann-Feynman theorem holds for an exact wave function, the difference between the two values becomes smaller as the quality of an approximate wave function increases however, for practical applications the difference is not negligible. It has been argued that the derivative technique resembles the physical experiment more, and consequently formula (10.21) should be preferred over (10.18). [Pg.241]

The first term is referred to as the diamagnetic contribution, while the latter is the paramagnetic part of the magnetizability. Each of the two components depend on the selected gauge origin however, for exact wave functions these cancel exactly. For approximate wave functions this is not guaranteed, and as a result the total property may depend on where the origin for the vector potential (eq. (10.61)) has been chosen. [Pg.250]

This proof shows that any approximate wave function will have an energy above or equal to the exact ground-state energy. There is a related theorem, known as MacDonald s Theorem, which states that the nth root of a set of secular equations (e.g. a Cl matrix) is an upper limit to the n — l)th excited exact state, within the given symmetry subclass. In other words, the lowest root obtained by diagonalizing a Cl matrix is an upper limit to the lowest exact wave functions, the 2nd root is an upper limit to the exact energy of the first excited state, the 3rd root is an upper limit to the exact second excited state and so on. [Pg.408]

In conclusion, we observe that many writers in the modern literature seem to agree about the convenience of the definition (Eq. 11.67), but that there has also been a great deal of confusion. For comparison we would like to refer to Slater, and Arai (1957). Almost the only exception seems to be Green et al. (1953, 1954), where the exact wave function is expanded as a superposition of orthogonal contributions with the HF determinant as its first term ... [Pg.235]

To find the optimal coefficients CA and CB one can use the variation principle, which states that any trial solution for the wave function will give a larger value for e(R) than the value obtained with the exact wave function. With this in mind, we should try to find the minimum of e(R) as a function of CA and CB. This is done by expressing e(R) as... [Pg.5]

As discussed above, it is impossible to solve equation (1-13) by searching through all acceptable N-electron wave functions. We need to define a suitable subset, which offers a physically reasonable approximation to the exact wave function without being unmanageable in practice. In the Hartree-Fock scheme the simplest, yet physically sound approximation to the complicated many-electron wave function is utilized. It consists of approximating the N-electron wave function by an antisymmetrized product4 of N one-electron wave functions (x ). This product is usually referred to as a Slater determinant, OSD ... [Pg.26]

An important consequence of the only approximate treatment of the electron-electron repulsion is that the true wave function of a many electron system is never a single Slater determinant We may ask now if SD is not the exact wave function of N interacting electrons, is there any other (necessarily artificial model) system of which it is the correct wave function The answer is Yes it can easily be shown that a Slater determinant is indeed an eigenfunction of a Hamilton operator defined as the sum of the Fock operators of equation (1-25)... [Pg.30]

Since the Fock operator is a effective one-electron operator, equation (1-29) describes a system of N electrons which do not interact among themselves but experience an effective potential VHF. In other words, the Slater determinant is the exact wave function of N noninteracting particles moving in the field of the effective potential VHF.5 It will not take long before we will meet again the idea of non-interacting systems in the discussion of the Kohn-Sham approach to density functional theory. [Pg.30]

To understand how Kohn and Sham tackled this problem, we go back to the discussion of the Hartree-Fock scheme in Chapter 1. There, our wave function was a single Slater determinant SD constructed from N spin orbitals. While the Slater determinant enters the HF method as the approximation to the true N-electron wave function, we showed in Section 1.3 that 4>sd can also be looked upon as the exact wave function of a fictitious system of N non-interacting electrons (that is electrons which behave as uncharged fermions and therefore do not interact with each other via Coulomb repulsion), moving in the elfective potential VHF. For this type of wave function the kinetic energy can be exactly expressed as... [Pg.59]

The next step is crucial. We have shown above that the exact wave functions of noninteracting fermions are Slater determinants.12 Thus, it will be possible to set up a noninteracting reference system, with a Hamiltonian in which we have introduced an effective, local potential Vs(r) ... [Pg.59]

The fundamental object in the quantum theory of matter is the wave function, which is the most compact way to represent all the information contained in a system. Exact wave functions are usually not available, so if we want to know certain properties of the system the procedure is to set up some model Hamiltonian and get an approximate wave function, from which the desired properties can be extracted. This program can be represented by... [Pg.264]

The Hartree-Fock method adequately describes the ground state of most molecules. However, the exact wave function itself should take into account the fact that electrons repel each other and need breathing space. The electrons should be allowed to make use of energy levels which are normally empty in the ground state to maintain this breathing space. In other words, to add terms describing excited states in the ground state wave function. [Pg.7]

We have just explained that the wave equation for the helium atom cannot be solved exacdy because of the term involving l/r12. If the repulsion between two electrons prevents a wave equation from being solved, it should be clear that when there are more than two electrons the situation is worse. If there are three electrons present (as in the lithium atom) there will be repulsion terms involving l/r12, l/r13, and l/r23. Although there are a number of types of calculations that can be performed (particularly the self-consistent field calculations), they will not be described here. Fortunately, for some situations, it is not necessary to have an exact wave function that is obtained from the exact solution of a wave equation. In many cases, an approximate wave function is sufficient. The most commonly used approximate wave functions for one electron are those given by J. C. Slater, and they are known as Slater wave functions or Slater-type orbitals (usually referred to as STO orbitals). [Pg.51]

We applied the Liouville-von Neumann (LvN) method, a canonical method, to nonequilibrium quantum phase transitions. The essential idea of the LvN method is first to solve the LvN equation and then to find exact wave functionals of time-dependent quantum systems. The LvN method has several advantages that it can easily incorporate thermal theory in terms of density operators and that it can also be extended to thermofield dynamics (TFD) by using the time-dependent creation and annihilation operators, invariant operators. Combined with the oscillator representation, the LvN method provides the Fock space of a Hartree-Fock type quadratic part of the Hamiltonian, and further allows to improve wave functionals systematically either by the Green function or perturbation technique. In this sense the LvN method goes beyond the Hartree-Fock approximation. [Pg.289]

It is remarkable that the energy scale given by the chemical potential of an approximate wave function can lead to an energy close to that of the exact wave function. The implications are, of course, very great. But it is by no means certain that these results for a two-electron, single-orbital system, can be generalized. [Pg.161]

There is, of course, a whole range of computed mean values of physical quantities which, for the exact wave function, should be equal to the corresponding observed... [Pg.48]

To improve on the wave function one has to accept that the standard multideterminantal expansion [Eq. (13.3)] is unsuitable for near-exact but practical approximations to the electronic wavefunction. The problem is dear from a simple analysis of the electronic Hamiltonian in Eq. (13.2) singularities in the Coulomb potential at the electron coalescence points necessarily lead to irregularities in first and higher derivatives of the exact wave function with respect to the interpartide coordinate, rj 2. The mathematical consequences of Coulomb singularities are known as electron-electron (correlation) and electron-nuclear cusp conditions and were derived by... [Pg.236]


See other pages where Exact wave functions is mentioned: [Pg.261]    [Pg.175]    [Pg.232]    [Pg.235]    [Pg.256]    [Pg.261]    [Pg.187]    [Pg.240]    [Pg.242]    [Pg.252]    [Pg.299]    [Pg.299]    [Pg.310]    [Pg.57]    [Pg.108]    [Pg.25]    [Pg.31]    [Pg.35]    [Pg.66]    [Pg.67]    [Pg.190]    [Pg.37]    [Pg.46]    [Pg.48]    [Pg.57]    [Pg.313]    [Pg.237]   
See also in sourсe #XX -- [ Pg.321 ]




SEARCH



Characteristics of the exact wave function

Correlation wave function, exact

Exact

Exact and Approximate Wave Functions

Exactive

Exactness

Molecular system exact” wave function

Size-extensivity of exact wave functions

Wave functions exact, expansion

© 2024 chempedia.info