Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Degradation sulfuric acid

Reactions and Uses. The common reactions that a-hydroxy acids undergo such as self- or bimolecular esterification to oligomers or cycHc esters, hydrogenation, oxidation, etc, have been discussed in connection with lactic and hydroxyacetic acid. A reaction that is of value for the synthesis of higher aldehydes is decarbonylation under boiling sulfuric acid with loss of water. Since one carbon atom is lost in the process, the series of reactions may be used for stepwise degradation of a carbon chain. [Pg.517]

Cellulose sulfated usiag sulfamic acid degrades less than if sulfated usiag sulfuric acid (23). Cellulose esters of sulfamic acids are formed by the reaction of sulfamyl haHdes ia the presence of tertiary organic bases (see Cellulose esters). [Pg.62]

Tendering Effects. CeUulosic materials dyed with sulfur black have been known to suffer degradation by acid tendering when stored under moist warm conditions. This effect may result from the Hberation of small quantities of sulfuric acid which occurs when some of the polysulfide links of the sulfur dye are mptured. A buffer, such as sodium acetate, or a dilute alkaH in the final rinse, especially after oxidation in acidic conditions, may prevent this occurrence. Copper salts should never be used with sulfur black dyes because they cataly2e sulfuric acid generation. Few instances of tendering with sulfur dyes other than black occur and the problem is largely confined to cotton. [Pg.171]

Double-Absorption Plants. In the United States, newer sulfuric acid plants ate requited to limit SO2 stack emissions to 2 kg of SO2 per metric ton of 100% acid produced (4 Ib /short ton Ib = pounds mass). This is equivalent to a sulfur dioxide conversion efficiency of 99.7%. Acid plants used as pollution control devices, for example those associated with smelters, have different regulations. This high conversion efficiency is not economically achievable by single absorption plants using available catalysts, but it can be attained in double absorption plants when the catalyst is not seriously degraded. [Pg.186]

The need for acid concentrators exists because many uses of sulfuric acid do not lead to its consumption. Instead, the acid is diluted and partially degraded and contaminated. In the past, large amounts of acid were disposed of either by usiag it ia the phosphate fertilizer iadustry to dissolve phosphate rock or by neutralization and subsequent discharge to waterways. [Pg.190]

Reactions other than those of the nucleophilic reactivity of alkyl sulfates iavolve reactions with hydrocarbons, thermal degradation, sulfonation, halogenation of the alkyl groups, and reduction of the sulfate groups. Aromatic hydrocarbons, eg, benzene and naphthalene, react with alkyl sulfates when cataly2ed by aluminum chloride to give Fhedel-Crafts-type alkylation product mixtures (59). Isobutane is readily alkylated by a dipropyl sulfate mixture from the reaction of propylene ia propane with sulfuric acid (60). [Pg.199]

Stannous Sulfate. Stannous sulfate (tin(Il) sulfate), mol wt 214.75, SnSO, is a white crystalline powder which decomposes above 360°C. Because of internal redox reactions and a residue of acid moisture, the commercial product tends to discolor and degrade at ca 60°C. It is soluble in concentrated sulfuric acid and in water (330 g/L at 25°C). The solubihty in sulfuric acid solutions decreases as the concentration of free sulfuric acid increases. Stannous sulfate can be prepared from the reaction of excess sulfuric acid (specific gravity 1.53) and granulated tin for several days at 100°C until the reaction has ceased. Stannous sulfate is extracted with water and the aqueous solution evaporates in vacuo. Methanol is used to remove excess acid. It is also prepared by reaction of stannous oxide and sulfuric acid and by the direct electrolysis of high grade tin metal in sulfuric acid solutions of moderate strength in cells with anion-exchange membranes (36). [Pg.66]

Cellulose valerates have been synthesized by conventional methods using valeric anhydride and sulfuric acid catalyst (25,26). Alternatively, the cellulose is activated by soaking in water, which is then displaced by methylene chloride or valeric acid the temperature is maintained at <38° C to minimize degradation. [Pg.251]

Solution Process. With the exception of fibrous triacetate, practically all cellulose acetate is manufactured by a solution process using sulfuric acid catalyst with acetic anhydride in an acetic acid solvent. An excellent description of this process is given (85). In the process (Fig. 8), cellulose (ca 400 kg) is treated with ca 1200 kg acetic anhydride in 1600 kg acetic acid solvent and 28—40 kg sulfuric acid (7—10% based on cellulose) as catalyst. During the exothermic reaction, the temperature is controlled at 40—45°C to minimize cellulose degradation. After the reaction solution becomes clear and fiber-free and the desired viscosity has been achieved, sufficient aqueous acetic acid (60—70% acid) is added to destroy the excess anhydride and provide 10—15% free water for hydrolysis. At this point, the sulfuric acid catalyst may be partially neutralized with calcium, magnesium, or sodium salts for better control of product molecular weight. [Pg.254]

This compound was prepared by Allen et who found it to be monobasic and to form a simple methiodide. Attempted Hofmann degradation of this methiodide failed to give any information. The dimer was found to be perfectly stable to hot aqueous sulfuric acid. With the foregoing data, and by analogy with the alkyl pyrrole dimers, they proposed structure (9) for the dimer. Later work confirmed this structure by conversion via the methiodide into base (10) which was synthesized by way of the metho salt (11), isomeric with... [Pg.291]

It is important to emphasize that often — but not always — the performance of a product with a chemical depends heavily on the manufacturer and a specific product model. A model that performs well with one chemical may perform poorly with another chemical, even when the chemicals are in the same chemical class. This is illustrated by the Edmont Model 37-165 glove which was tested against all five acids. This glove shows good protective properties with hydrochloric, perchloric, and phosphoric acids, but exhibits degradation in nitric and sulfuric acids. [Pg.64]

This new and novel method to study the photochemical degradation of Kevlar-29 fabric in air divides into four steps (1) fabric cleaning, (2) photolysis at specified temperature and time in 0.2 atm - 02, (3) preparation of the degraded (DMAc-soluble) sample surface for decarboxylation at 25° and 196°C in the concentrated sulfuric acid, and (4) the total carbon dioxide analyses by gas chromatography and the isotopic carbon dioxide ( °C02 and 48co2) ratios by GC-mass spectrometer. [Pg.337]

Kerr181 has suggested that treatment of maize starch granules with 0.1 to 0.15 N sulfuric acid results in preferential degradation of the amylopectin,... [Pg.371]


See other pages where Degradation sulfuric acid is mentioned: [Pg.241]    [Pg.275]    [Pg.27]    [Pg.70]    [Pg.392]    [Pg.251]    [Pg.252]    [Pg.265]    [Pg.490]    [Pg.85]    [Pg.491]    [Pg.2425]    [Pg.176]    [Pg.400]    [Pg.547]    [Pg.561]    [Pg.310]    [Pg.835]    [Pg.83]    [Pg.12]    [Pg.960]    [Pg.739]    [Pg.290]    [Pg.355]    [Pg.358]    [Pg.84]    [Pg.329]    [Pg.866]    [Pg.178]    [Pg.87]    [Pg.447]    [Pg.273]    [Pg.300]    [Pg.299]    [Pg.239]    [Pg.171]    [Pg.144]   
See also in sourсe #XX -- [ Pg.59 , Pg.60 , Pg.61 , Pg.62 , Pg.63 , Pg.64 , Pg.65 , Pg.66 , Pg.67 , Pg.68 , Pg.104 ]

See also in sourсe #XX -- [ Pg.59 , Pg.60 , Pg.61 , Pg.62 , Pg.63 , Pg.64 , Pg.65 , Pg.66 , Pg.67 , Pg.68 , Pg.104 ]

See also in sourсe #XX -- [ Pg.59 , Pg.60 , Pg.61 , Pg.62 , Pg.63 , Pg.64 , Pg.65 , Pg.66 , Pg.67 , Pg.68 , Pg.104 ]




SEARCH



Acid degradation

© 2024 chempedia.info