Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Deactivating reagent

Synthesis of well defined functionalized (- telechellc or multifunctional-) macromolecules Is an Important task for polymer chemists. The polymers with P0(0R)2, - Si(0R)3, -OH, - . .. functional groupslrS. are produced In limited quantities. The need for polymeric materials possessing specific properties has led to a renewed Interest Is functional polymers, especially if the initial material Is a common hydrocarbon polymer. One of the techniques that we use in our laboratory to prepare these new molecules Is based on anionic processes. This anionic technique is best suited to control the length of the chains prepared and to obtain samples with low polydlsperslty. Although the functionalization of carbanionic sites with various deactivating reagents Is easier than with other methods because of the long lived species, It Is still necessary to carefully control the deactivation reaction to prevent secondary reactions. [Pg.483]

Reactions of Anionic Sites With Oxygen as a Deactivation Reagent... [Pg.483]

In the following, we shall limit ourselves for the sake of simplicity to optical deactivation reagents X and Y are attached to two flexible chains and immersed in a liquid of the same chains. We shall also assume that the reaction occurs whenever the distance between the two centers X and Y becomes smaller than a given trapping radius b. [Pg.13]

The conversion of carboxylic acid derivatives (halides, esters and lactones, tertiary amides and lactams, nitriles) into aldehydes can be achieved with bulky aluminum hydrides (e.g. DIBAL = diisobutylaluminum hydride, lithium trialkoxyalanates). Simple addition of three equivalents of an alcohol to LiAlH, in THF solution produces those deactivated and selective reagents, e.g. lithium triisopropoxyalanate, LiAlH(OPr )j (J. Malek, 1972). [Pg.96]

Molecular fluorescence and, to a lesser extent, phosphorescence have been used for the direct or indirect quantitative analysis of analytes in a variety of matrices. A direct quantitative analysis is feasible when the analyte s quantum yield for fluorescence or phosphorescence is favorable. When the analyte is not fluorescent or phosphorescent or when the quantum yield for fluorescence or phosphorescence is unfavorable, an indirect analysis may be feasible. One approach to an indirect analysis is to react the analyte with a reagent, forming a product with fluorescent properties. Another approach is to measure a decrease in fluorescence when the analyte is added to a solution containing a fluorescent molecule. A decrease in fluorescence is observed when the reaction between the analyte and the fluorescent species enhances radiationless deactivation, or produces a nonfluorescent product. The application of fluorescence and phosphorescence to inorganic and organic analytes is considered in this section. [Pg.429]

Mercury(II) acetate tends to mercurate all the free nuclear positions in pyrrole, furan and thiophene to give derivatives of type (74). The acetoxymercuration of thiophene has been estimated to proceed ca. 10 times faster than that of benzene. Mercuration of rings with deactivating substituents such as ethoxycarbonyl and nitro is still possible with this reagent, as shown by the formation of compounds (75) and (76). Mercury(II) chloride is a milder mercurating agent, as illustrated by the chloromercuration of thiophene to give either the 2- or 2,5-disubstituted product (Scheme 25). [Pg.55]

Tnfluoroacetic anhydnde in a mixture with sulfuric acid is an efficient reagent for the sulfonylation of aromatic compounds [44] The reaction of benzene with this system in nitromethane at room temperature gives diphenyl sulfone in 61% yield Alkyl and alkoxy benzenes under similar conditions form the corresponding diaryl sulfones in almost quantitative yield, whereas yields of sulfones from deactivated arenes such as chlorobenzene are substantially lower [44] The same reagent (tnfluoroacetic anhydride-sulfunc acid) reacts with adamantane and its derivatives with formation of isomeric adamantanols, adamantanones, and cyclic sultones [45]... [Pg.949]

Pyridine lies near one extreme in being far less reactive than benzene toward substitution by electrophilic reagents. In this respect it resembles strongly deactivated aromatic compounds such as nitrobenzene. It is incapable of being acylated or alkylated under Friedel-Crafts conditions, but can be sulfonated at high temperature. Electrophilic substitution in pyridine, when it does occur, takes place at C-3. [Pg.507]

Typically, an acetanilide (1 mol. equiv.) was treated with the Vilsmeier reagent generated from POCI3 (7 mol. equiv.) and V,V-dimethylformamide (DMF, 2.5 mol. equiv.) at 75 °C for 4 - 20 h. The reaction products were readily obtained by filtration after pouring the reaction mixture onto ice-water minor reaction products were isolated after basification of the filtrate. A variety of acetanilides were studied under these optimised reaction conditions and some significant observations were noted. Activated acetanilides 3 [e.g. R = 4-Me (70%), 4-OMe (56%)] reacted faster and in better yield to give quinolines 4 than other strongly deactivated systems 3 [e.g. R = 4-Br (23%), 4-Cl (2%), 4-NO2 (0%)] — in these cases, formamidines 5 and acrylamides 6 were the major reaction products. [Pg.443]

The reaction of benzylmagnesium chlorides wnth thiophenealde-hydes and thienyl ketones has been used for the preparation of styrylthiophenes and 1,2,2-triarylethylenes, which are of biological interest. In stilbene and 1,2,2-triphenylethylene the reactivity toward electrophilic reagents is transferred with deactivation to the double bond. However, styrylthiophene is formylated and acylated... [Pg.99]

A comparison of ortho vs. para direct deactivation by a methoxy group has been made by Karmas and Spoerri in 2,3-dibromo-5,6-dimethyl- and 2,5-dibromo-3,6-dimethyl-pyrazine. The former gives monomethoxy-debromination with one equivalent of methanolic methoxide (65°, 6 hr) and disubstitution via 198 with excess reagent for a longer time (10 hr). In contrast, the isomeric 2,5-dibromo compound gave only monosubstitution, forming 199, under the latter conditions. [Pg.242]

Monomers not amenable to direct homopolymerization using a particular reagent can sometimes be copolymcrizcd. For example, NMP often fails with methacrylates (e.g. MMA, BMA), yet copolymerizalions of these monomers with S are possible even when the monomer mix is predominantly composed of the methacrylate monomer,15j This is attributed to the facility of cross propagation and the relatively low steady state concentration of propagating radicals with a terminal MMA (Section 7.4.3.1). MMA can also be copolymerized with S or acrylates at low temperature (60 C).111 Under these conditions, only deactivation of propagating radicals with a terminal MMA unit is reversible, deactivation of chains with a terminal S or acrylate unit is irreversible. Molecular weights should then be controlled by the reactivity ratios and the comonomer concentration rather than by the nitroxide/alkoxyamine concentration. [Pg.527]


See other pages where Deactivating reagent is mentioned: [Pg.77]    [Pg.494]    [Pg.499]    [Pg.83]    [Pg.148]    [Pg.1820]    [Pg.1821]    [Pg.77]    [Pg.494]    [Pg.499]    [Pg.83]    [Pg.148]    [Pg.1820]    [Pg.1821]    [Pg.248]    [Pg.507]    [Pg.472]    [Pg.493]    [Pg.525]    [Pg.525]    [Pg.39]    [Pg.466]    [Pg.254]    [Pg.216]    [Pg.155]    [Pg.233]    [Pg.245]    [Pg.246]    [Pg.250]    [Pg.253]    [Pg.349]    [Pg.381]    [Pg.391]    [Pg.298]    [Pg.114]    [Pg.7]    [Pg.498]    [Pg.283]    [Pg.300]    [Pg.172]    [Pg.124]    [Pg.321]    [Pg.455]    [Pg.98]    [Pg.198]   
See also in sourсe #XX -- [ Pg.8 , Pg.494 ]




SEARCH



© 2024 chempedia.info