Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Daughter, radioactive

Figure 11,8 Composite decay curves for (A) mixtures of independently decaying species, (B) transient equilibrium, (C) secular equilibrium, and (D) nonequilibrium, a composite decay curve b decay curve of longer-lived component (A) and parent radio nuclide (B, C, D) c decay curve of short-lived radionuclide (A) and daughter radionuclide (B, C, D) d daughter radioativity in a pure parent fraction (B, C, D) e total daughter radioactivity in a parent-plus-daughter fraction (B). In all cases, the detection coefficients of the various species are assumed to be identical. From Nuclear and Radiochemistry, G. Friedlander and J. W. Kennedy, Copyright 1956 by John Wiley and Sons. Reprinted by permission of John Wiley and Sons Ltd. Figure 11,8 Composite decay curves for (A) mixtures of independently decaying species, (B) transient equilibrium, (C) secular equilibrium, and (D) nonequilibrium, a composite decay curve b decay curve of longer-lived component (A) and parent radio nuclide (B, C, D) c decay curve of short-lived radionuclide (A) and daughter radionuclide (B, C, D) d daughter radioativity in a pure parent fraction (B, C, D) e total daughter radioactivity in a parent-plus-daughter fraction (B). In all cases, the detection coefficients of the various species are assumed to be identical. From Nuclear and Radiochemistry, G. Friedlander and J. W. Kennedy, Copyright 1956 by John Wiley and Sons. Reprinted by permission of John Wiley and Sons Ltd.
It is important to note that radon per se is not the direct radiation hazard, but rather it is certain daughters (radioactive-decay products of the radon—mainly isotopes of polonium) that contribute the major radiation dose to lung tissue. These isotopes are chemically reactive. They can stick, either in elemental form or adsorbed onto minute airborne particles, to the lining of the bronchial passageways, whence they eradicate the surrounding tissue. [Pg.1418]

The error caused by the assumption that the activities of parent and daughter radioactive isotopes are in secular equilibrium in a closed system (Eq. (5.26)) as a function of the ratio of the parent daughter (P D) half lives. Very small errors exist as t /2,p/t /2.D becomes greater than 50. [Pg.157]

Care must be taken in handling radon, as with other radioactive materials. The main hazard is from inhalation of the element and its solid daughters which are collected on dust in the air. Good ventilation should be provided where radium, thorium, or actinium is stored to prevent build-up of the element. Radon build-up is a health consideration in uranium mines. Recently radon build-up in homes has been a concern. Many deaths from lung cancer are caused by radon exposure. In the U.S. it is recommended that remedial action be taken if the air in homes exceeds 4 pCi/1. [Pg.153]

Radon-222 [14859-67-7] Rn, is a naturally occuriing, iaert, radioactive gas formed from the decay of radium-226 [13982-63-3] Ra. Because Ra is a ubiquitous, water-soluble component of the earth s cmst, its daughter product, Rn, is found everywhere. A major health concern is radon s radioactive decay products. Radon has a half-life of 4 days, decayiag to polonium-218 [15422-74-9] Po, with the emission of an a particle. It is Po, an a-emitter having a half-life of 3 min, and polonium-214 [15735-67-8] Po, an a-emitter having a half-life of 1.6 x lO " s, that are of most concern. Polonium-218 decays to lead-214 [15067-28A] a p-emitter haviag = 27 min, which decays to bismuth-214 [14733-03-0], a p-emitter haviag... [Pg.381]

The above decay equations apply to the simple case of a radionucHde that is decaying without being replenished. There are many cases in which a nucHde is both being produced and decaying at the same time. One example is the case where one radioactive nucHde is produced by the decay of another nucHde (see Tables 1 and 2). If there are (0) atoms of nucHde 1, the parent, having decay constant A, decays to nucHde 2, the daughter, having decay constant X, then at t = 0 there are (0) such atoms present. Then... [Pg.446]

In this decay process, only one particle is emitted and, because energy is conserved, for each level in the daughter nucleus there is a unique a-particle energy. This means that a measurement of the differences in the energies of the a-particles emitted in a radioactive decay gives expHcidy the differences in the energies of the levels in the daughter nucleus. [Pg.448]

Eor virtually all radiopharmaceuticals, the primary safety consideration is that of radiation dosimetry. Chemical toxicity, although it must be considered, generally is a function of the nonradio active components of the injectate. These are often unreacted precursors of the intended radioactive product, present in excess to faciUtate the final labeling reaction, or intended product labeled with the daughter of the original radioactive label. [Pg.482]

Zirconium phosphate [13772-29-7] also absorbs cesium and other radioactive-decay daughter products, and has been proposed as part of permanent disposal systems for nuclear fuel waste processing. [Pg.433]

Loss of radon in the ocean occurs typically through radioactive decay (producing four short-lived daughters before decaying to °Pb) or loss to the atmosphere at the air-sea interface. Loss of radon owing to turbulence or diffusion at the air-sea interface leads to a depletion of radon with respect to "Ra, allowing for studies on gas exchange at this interface. ... [Pg.49]

The nature of the radioactive decay is characteristic of the element it can be used to fingerprint die substance. Decay continues until bodi die original element and its daughter isotopes are non-radioactive. The half-life, i.e. die time taken for half of an element s atoms to become non-radioactive, varies from millions of years for some elements to fractions of a second for odiers. [Pg.391]

Radon (Rn) and Radon Decay Products Radon is a radioactive gas formed in the decay of uranium. The radon decay products (also called radon daughters or progeny) can be breathed into the lung where they continue to release radiation as they further decay. [Pg.543]

Radon daughters The series of unstable isotopes that are formed as radon atoms undergo radioactive decay. [Pg.1471]

Tlie kind of trcuisformation tliat will take place for any given radioactive element is a function of the type of nuclear instability as well as the mass/eiiergy relationship. Tlie nuclear instability is dependent on the ratio of neutrons to protons a different type of decay will occur to allow for a more stable daughter product. The mass/energy relationship stales tliat for any radioactive transformation(s) the laws of conservation of mass tuid tlie conservation of energy must be followed. [Pg.27]

An alplia p uticle is an energetic helium nucleus. The alplia particle is released from a radioactive element witli a neutron to proton ratio tliat is too low. The helium nucleus consists of two protons and two neutrons. The alplia particle differs from a helimn atom in that it is emitted witliout any electrons. The resulting daughter product from tliis tj pe of transformation lias an atomic number Uiat is two less tluin its parent and an atomic mass number tliat is four less. Below is an e. aiiiple of alpha decay using polonium (Po) polonium has an atomic mass number of 210 (protons and neutrons) and atomic number of 84. [Pg.194]

The bulk of both monazite and bastnaesite is made up of Ce, La, Nd and Pr (in that order) but, whereas monazite typically contains around 5-10% Th02 and 3% yttrium earths, these and the heavy lanthanides are virtually absent in bastnaesite. Although thorium is only weakly radioactive it is contaminated with daughter elements such as Ra which are more active and therefore require careful handling during the processing of monazite. This is a complication not encountered in the processing of bastnaesite. [Pg.1229]

Identify the daughter nuclides in each step of the radioactive decay of uranium-235, if the string of particle emissions is a, p, a, P, ct, a, a, P, a, p, a. Write a balanced nuclear equation for each step. [Pg.843]

This situation, when the activity of the higher atomic number nuclide, the parent, is equal to the activity in the next step in the chain, the daughter, is known as radioactive equilibrium (also referred to as secular equilibrium). Thus, secular equilibrium between a parent and a daughter implies an activity ratio of 1. [Pg.6]

In the introduction we asserted that it was important to use the correct partition coefficients when interpreting U-series data. Both the ratio of daughter and parent partition coefficients and their absolute values are important. Small errors in the ratio can propagate to quite large errors in predictions of activity ratios even when the source material is assumed to have a parent-daughter ratio of unity (i.e., in radioactive... [Pg.63]

Figure 1. (a) Schematic representation of the evolution by radioactive decay of the daughter-parent (N2/N1) activity ratio as a function of time t after an initial fractionation at time 0. The initial (N2/Ni)o activity ratio is arbitrarily set at 2. Time t is reported as t/T2, where T2 is the half-life of the daughter nuclide. Radioactive equilibrium is nearly reached after about 5 T2. (b) Evolution of (N2/N1) activity ratios for various parent-daughter pairs as a function of time since fractionation (after Williams 1987). Note that the different shape of the curves in (a) and (b) is a consequence of the logarithmic scale on the x axis in (b). [Pg.127]


See other pages where Daughter, radioactive is mentioned: [Pg.1936]    [Pg.355]    [Pg.1936]    [Pg.355]    [Pg.88]    [Pg.446]    [Pg.458]    [Pg.476]    [Pg.476]    [Pg.35]    [Pg.36]    [Pg.336]    [Pg.37]    [Pg.37]    [Pg.38]    [Pg.103]    [Pg.388]    [Pg.194]    [Pg.18]    [Pg.317]    [Pg.357]    [Pg.358]    [Pg.32]    [Pg.60]    [Pg.63]    [Pg.85]    [Pg.126]    [Pg.126]    [Pg.128]    [Pg.131]   
See also in sourсe #XX -- [ Pg.234 ]




SEARCH



© 2024 chempedia.info