Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclopolymerization polymerization

Ottenbrite, R.M. and Shillady, D.D., "Ring Size on Cyclopolymerization" Polymeric Amines and Ammonium Salts, E. Goethals, Ed. Pergamon Press Oxford, 1980. [Pg.140]

A vast range of symmetrical and unsymmetrieal 1,6-diene monomers has now been prepared and polymerized and the generality of the process is well established.98,1 A summary of symmetrical 1,6-dienc structures, known to give cyclopolymerization, is presented in Table 4.4 In many cases, the structure of the repeat units has not been rigorously established. Often the only direct evidence for cyclopolymerization is the solubility of the polymer or the absence of residual unsaturalion. In these cases the proposed repeat unit structures are speculative. [Pg.187]

The observation by Matsumoto et al. (see 4.3.1.4) that significant amounts of head addition occur in polymerization of simple ally] monomers brings into question the origin of the small amounts of six-membered ring products that arc formed in cyclopolymerization of simple diallyl monomers (Scheme 4.14). If the intcrmolecular addition step were to involve head addition, then the intramolecular step should give predominantly a six-membered ring product (14) (by analogy with chemistry seen for 1,7 dienes - see 4.4.1.4). Note that the repeat units 14 and 16, like 12 and 17 are the same however, they are oriented differently in the chain. [Pg.188]

Diallyl monomers find significant use in cyclopolymerization (Section 4.4.1). Transfer to monomer is of greater importance in polymerizations of allyl than it is in diallyl monomers.184 This might, in part, reflect differences in the nature of the propagating species [e.g. a secondary alkyl (115) v.v a primary alkyl radical (116)]. Electronic factors may also play a role,185... [Pg.319]

ATRP has been widely used for the polymerization of methacrylates. However, a very wide range of monomers, including most of those amenable to conventional radical polymerization, has been used in ATRP. ATRP has also been used in cyclopolymerization (e.g. of 16flm364) and ring opening polymerization or copolymerization e.g. of 16T 115 366 and 162 67). ... [Pg.497]

To explain the formation of non-crosslinked polymers from the diallyl quaternary ammonium system, Butler and Angelo proposed a chain growth mechanism which involved a series of intra- and inter-molecular propagation steps (15). This type of polymerization was subsequently shown to occur in a wide variety of symmetrical diene systems which cyclize to form five or six-membered ring structures. This mode of propagation of a non-conjugated diene with subsequent ring formation was later called cyclopolymerization. [Pg.128]

An alternative method of preparing the saturated cyclic amines via cyclopolymerization of diallylamine or diallylammonium chloride was unsuccessful. Common free radical initiators such as 2,2 -azobisisobutyronitrile, ammonium persulfate, benzoyl peroxide were found to be ineffective. Several procedures reported in the literature were followed, and unfortunately all of them have resulted only a small amount of low molecular weight oligomers. Further research for polymerization conditions and types of initiation is still required. [Pg.134]

The second termination reaction is alkyl chain end transfer from the active species to aluminium [155]. This termination becomes major one at lower temperatures in the catalyst systems activated by MAO. XH and 13CNMR analysis of the polymer obtained by the cyclopolymerization of 1,5-hexadiene, catalyzed by Cp ZrCl2/MAO, afforded signals due to methylenecyclopentane, cyclopentane, and methylcyclopentane end groups upon acidic hydrolysis, indicating that chain transfer occurs both by /Miydrogen elimination and chain transfer to aluminium in the ratio of 2 8, and the latter process is predominant when the polymerization is carried out at — 25°C [156]. The values of rate constants for Cp2ZrCl2/MAO at 70°C are reported to be kp = 168-1670 (Ms) 1, kfr = 0.021 - 0.81 s 1, and kfr = 0.28 s-1 [155]. [Pg.22]

Recently, a metallocene/MAO system has been used for the polymerization of non-conjugated dienes [204, 205]. The cyclopolymerization of 1,5-hexadiene has been catalyzed by Zieger-Natta catalyst systems, but with low activity and incomplete cyclization in the formation 5-membered rings [206]. The cyclopolymerization of 1,5-hexadiene in the presence of ZrMe2Cp2/MAO afforded a polymer (Mw = 2.7 x 107, Mw/Mn = 2.2) whose NMR indicated that almost complete cyclization had taken place. One of the olefin units of 1,5-hexadiene is initially inserted into an M-C bond and then cyclization proceeds by further... [Pg.33]

When a chiral ansa-type zirconocene/MAO system was used as the catalyst precursor for polymerization of 1,5-hexadiene, an main-chain optically active polymer (68% trans rings) was obtained84-86. The enantioselectivity for this cyclopolymerization can be explained by the fact that the same prochiral face of the olefins was selected by the chiral zirconium center (Eq. 12) [209-211]. Asymmetric hydrogenation, as well as C-C bond formation catalyzed by chiral ansa-metallocene 144, has recently been developed to achieve high enantioselectivity88-90. This parallels to the high stereoselectivity in the polymerization. [Pg.34]

Cyclopolymerization of Nonconjugated Dienes. Cyclopolymerization is an addition polymerization that leads to introduction of cyclic structures into the main chain of the polymer. Nonconjugated dienes are the most deeply studied monomers for cyclopolymerization and for cyclocopolymerizations with alkene monomers 66 In general, (substituted and unsubstituted) dienes with double bonds that are linked by less than two or more than four atoms cannot undergo efficient cyclization and result in crosslinked materials.12 In fact, efficient cyclopolymerization processes have been described, for instance, for a,oo-dienes like 1,5-hexadiene, 2-methyl-l,5-hexadiene, 1,6-heptadiene, and 1,7-octadiene,67 73 which lead to formation of homopolymers and copolymers containing methylene-1,3-cycloalkane units. [Pg.26]

Trifluorostyrene-based monomers and fheir derivatives are known to exhibit dimerization preferentially over polymerization in confrasf to fhe hydrocarbon analogue slyrene. Eord, DesMarfeau, and Smifh, Smifh and Babb,i i and Smith et al. have advantageously used this behavior to produce 6 (where E can be a large number of differenf spacer groups buf also typically be sulfonamide-based) via cyclopolymerization of multifunctional monomers bearing at least two trifluorovinyl ether units. The polymers themselves have perfluorocyclobutane (PFCB) rings as part of the main chain. [Pg.140]

The ionic chain polymerization of unsaturated linkages is considered in this chapter, primarily the polymerization of the carbon-carbon double bond by cationic and anionic initiators (Secs. 5-2 and 5-3). The last part of the chapter considers the polymerization of other unsaturated linkages. Polymerizations initiated by coordination and metal oxide initiators are usually also ionic in nature. These are called coordination polymerizations and are considered separately in Chap. 8. Ionic polymerizations of cyclic monomers is discussed in Chap. 7. The polymerization of conjugated dienes is considered in Chap. 8. Cyclopolymerization of nonconjugated dienes is discussed in Chap. 6. [Pg.372]

The importance of intramolecular cyclization was emphasized when Butler and coworkers found that the radical polymerization of N, N, N, /V-diallyldimethylammonium chloride (DADMAC) gave soluble, uncrosslinked polymers with little or no unsaturation (Eq. 6-101) [Butler and Angelo, 1957 Butler and Ingley, 1951 Wandrey et al., 1999]. There is a very low tendency for radical IV to propagate intermolecularly and undergo crosslinking. The predominant reaction is intramolecular cyclization, and the product is a linear product with cyclic structures in the backbone. The reaction is referred to as alternating intra/intermolecular polymerization or cyclopolymerization. [Pg.525]

A number of Mo carbene catalysts, bearing various modified ligands, have been reported and proven to elegantly induce living polymerization of acetylene monomers. The first example is the cyclopolymerization of 1,6-heptadiynes catalyzed by Mo carbenes Mo carbenes ligated by bulky imido and alkoxy groups are quite effective. In... [Pg.576]

Cyclopolymerization of dialdehydes was extensively studied by Aso and his coworkers (50). It was remarkable that o-phthalaldehyde could be polymerized readily (5Z-53), because aromatic aldehydes such as benzaldehyde, isophthalaldehyde and terephthalaldehyde did not polymerize with common ionic catalysts. In addition, the poly[o-phthal-aldehyde] obtained was composed of only cyclic structural units. These results suggested that the driving force for the polymerization of o-phthalaldehyde was apparently attributable to the formation of the five-membered ring in the course of cyclopolymerization. The ceiling temperature of the polymerization of o-phthalaldehyde was calculated to be — 43° C from the relationship between the equilibrium concentration of the monomer and the polymerization temperature (51,52). [Pg.85]


See other pages where Cyclopolymerization polymerization is mentioned: [Pg.490]    [Pg.490]    [Pg.82]    [Pg.5]    [Pg.177]    [Pg.194]    [Pg.594]    [Pg.608]    [Pg.610]    [Pg.616]    [Pg.630]    [Pg.632]    [Pg.634]    [Pg.228]    [Pg.225]    [Pg.155]    [Pg.27]    [Pg.240]    [Pg.225]    [Pg.226]    [Pg.225]    [Pg.144]    [Pg.251]    [Pg.188]    [Pg.20]    [Pg.310]    [Pg.524]    [Pg.525]    [Pg.525]    [Pg.534]    [Pg.238]    [Pg.176]    [Pg.574]    [Pg.7]   
See also in sourсe #XX -- [ Pg.208 , Pg.218 ]




SEARCH



Cyclopolymerization

Metathesis polymerization of diynes cyclopolymerization

Polymerization Cyclopolymerization, Oxidative

© 2024 chempedia.info