Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclopentenone synthesis cycloaddition

Keywords Fischer carbenes Template synthesis Cocyclization Cycloaddition Cyclopentadienes Cyclopentenones Domino reactions... [Pg.22]

Other examples of [2C+2S+1C0] cycloaddition reactions have been described by Herndon et al. by the use of chromium cyclopropyl(methoxy)carbenes. These complexes react with alkynes releasing ethene and forming cyclopenta-dienone derivatives, which evolve to cyclopentenone derivatives in the presence of chromium(O) and water [122] (Scheme 76). This reaction has been extended to intramolecular processes and also to the synthesis of some natural products [123]. These authors have also described another process involving a formal [2C+2S+1C0] cycloaddition reaction. Thus, the reaction of methyl and cyclo-propylcarbene complexes with phenylacetylene derivatives does not afford the expected benzannulated products, and several regioisomers of cyclopentenone derivatives are the only products isolated [124] (Scheme 76). [Pg.110]

The presence of a cyclopropyl moiety in the carbene complexes makes them useful for synthesis. The cyclopropylcarbene complexes 95 undergo a cycloaddition reaction with alkynes to give the cyclopentenones 96 [51]. The reaction course is explained as being metallacyclopentene fragmentation. (Scheme 34)... [Pg.122]

A total synthesis of functionalized 8,14-seco steroids with five- and six-membered D rings has been developed (467). The synthesis is based on the transformation of (S)-carvone into a steroidal AB ring moiety with a side chain at C(9), which allows the creation of a nitrile oxide at this position. The nitrile oxides are coupled with cyclic enones or enol derivatives of 1,3-diketones, and reductive cleavage of the obtained cycloadducts give the desired products. The formation of a twelve-membered ring compound has been reported in the cycloaddition of one of the nitrile oxides with cyclopentenone and as the result of an intramolecular ene reaction, followed by retro-aldol reaction. [Pg.92]

An important procedure for the synthesis of cyclopentenones is the so-called Pauson-Khand reaction, which constitutes a formal [2 + 2 + 1] cycloaddition of an alkene, an alkyne, and carbon monoxide. Due to the increase in structural diversity of the available starting materials, the reaction has become an attractive target for scientific investigations [1-8]. The first successful example was reported by Pauson, Khand et al [9] in 1973 for the conversion of norbornene with the phenylacetylene-hexacarbonyldicobalt complex to give the corresponding cyclopentenone in 45% yield (Eq. 1). [Pg.173]

More recently, the total synthesis of isocarbacyclin, a therapeutically useful agent against numerous vascular diseases, was reported by Saito et al. [56]. Again, the crucial cycloaddition step was carried out using a stoichiometric amount of Co2(CO)8. The reaction was completed within 3h and gave 78% yield of the desired cyclopentenone (Eq. 8). [Pg.179]

The reaction of (trialkylsilyl)vinylketenes with nucleophilic carbenoid reagents, such as sulfur ylides and diazo compounds, has been used for synthesis of substituted cyclopentenones by stereoselective 4 + 1-annulation (Scheme 12). The strategy relies on the remarkable ability of silyl substituents to stabilize ketenes and suppress their tendency to undergo dimerization and 2 - - 2-cycloaddition. [Pg.381]

Transition-metal-promoted cycloaddition is of much interest as a powerful tool for synthesis of carbocyclic stmcture in a single step. Utilization of carbon monoxide as a component of the cycloaddition reaction is now widely known as the Pauson-Khand reaction, which results in cyclopentenone formation starting from an alkyne, an alkene, and carbon monoxide mediated by cobalt catalyst. Although mechanistic understanding is limited, a commonly accepted mechanism is shown in Scheme 4.16. Formation of dicobalt-alkyne complex followed by alkene... [Pg.115]

However, from the outset of this field, the limitations as well as the potentials of this cycloaddition were also apparent. For instance, the efficiency of this cycloaddition in an intermolecular manner was typically low unless strained olefins were used. Moreover, the use of unsymmetrical alkenes led to a mixture of the cyclopentenone regioisomers. Synthetic utility of this reaction is considerably expanded by the emergency of the intramolecular reaction. Schore introduced the first intramolecular version forming several rings simultaneously, which is now the most popular synthetic strategy in natural product synthesis because of its conceptual and operational simplicity. Additionally, the regiochemistry is no longer the problem in this variation. [Pg.336]

In cycloadditions of enones to alkenes novel strategies have been adopted for ring expansion of the cycloadducts, either by the choice of appropriate alkenes, e.g. 2-(trimethylsiloxy)buta-1,3-diene,70 vmv-2-trimethylsiloxybuten-2-oales71 or 3,3-dimethylcyclopropene,72 or by using 3-oxo-l-cyeloalkene-l-carboxylates as enones.73 Asymmetric [2 + 2] photocycloaddition of cyclopent-2-enone to a (+ )-dihydrofuran acetonide constitutes the cornerstone of the synthetic strategy in the first total synthesis of the novel antitumor metabolite ( )-echinosporin.74 The cycloaddition product 25 from treatment of 2-(2-carbomethoxyethyl)-2-cyclopentenone (24) with ethene has been used as a precursor for the preparation of tricyclo[4.2.0.01,4]octane.75... [Pg.154]

The [2+2+1] cycloaddition of an alkene, an alkyne and carbon monoxide is commonly known as the Pauson-Khand reaction. This transformation has been adopted many times in the synthesis of complex natural products and related compounds, which contain a cyclopentenone moiety, for example, prostaglandins. Two independent reports of this reaction appeared almost simultaneously in late 2002 by Iqbal and co-workers25 and Fisher and co-workers26, respectively. They not only used very similar substrate systems in their studies, but they also reached very similar conclusions Toluene was found to be the preferred solvent in this reaction, even though it is a very poor microwave absorber. A reaction time between 5 and 10 min, using dicob alto ctacar-bonyl or dicobalthexacarbonyl as the carbon monoxide source, and a temperature of 100-120°C resulted in high yields of the products. Fisher and co-workers used 20 mol% Co2(CO)8 and cyclohexylamine as an additive (Scheme 5.12), since this system had been used previously in order to allow a catalytic reaction. Iqbal and co-workers did not use cyclohexylamine, but instead used 1 equiv. of the carbon monoxide (Co2(CO)6) source. In both reports, the products were formed in 40-70% yield. [Pg.112]

The iron-mediated [2 + 2 + 1]-cycloaddition to cyclopentadienones has been successfully applied to the synthesis of corannulene [24] and the yohimbane alkaloid ( )-demethoxycarbonyldihydrogambirtannine [25]. A [2 + 2 + l]-cydoaddition of an alkene, an alkyne and carbon monoxide mediated by pentacarbonyliron, related to the well-known Pauson-Khand reaction [26], has also been described to afford cyclopentenones [27]. [Pg.6]

A new synthesis of ( )-actinidine has been reported it is interesting in that it has, as its key step, the thermal intramolecular cycloaddition of an acetylenic pyrimidine.34 A further synthesis of ( )-muscopyridine, based on a regioselective cyclopentenone annulation, has been described.35... [Pg.42]

The metal mediated synthesis of cyclopentenones via a [2 + 2+1] cycloaddition between an alkyne, an alkene and carbon monoxide has become commonly known as the Pauson-Khand (PK) reaction. This report will briefly summarise some of the major developments since its initial discovery including an intramolecular variant of the reaction, the progress made towards making the process catalytic and examples of how the reaction has been utilised. The proposed mechanism for the reaction and the factors that influence the product distribution will also be introduced. [Pg.109]

The photochemistry of a,p nsaturated ketones has attracted much attention and is still a field cld of current interest. 1/Numer-ous examples of such photochemical transformations are well-documented for cyclic enones and dienones, including both cycloaddition ructions and rearrangements. For example, cyclopentenones / and/readily rearrange to cyclopropyl ketenes upon irra/idiation. Recently, the related cyclohexadienone/butadienyl ketene rearrangement has been shown to be a highly useful tool in the synthesis of natural products and macrocydic lactone /... [Pg.38]

Keese envisioned the use of a tandem PKR for the synthesis of fenestranes. The second cycloaddition was in principle problematic as it involved an al-kene conjugated with a ketone. They were surprised when they observed the direct formation of the tetracyclic unit 136 from the endiyne 135 although with low yield [ 148]. Further studies from this group led to a mechanistic proposal that explained this result. It was clear from the fact that compound 140 failed to react, that the second PKR had to start from an intermediate metal-lacycle rather than from the uncomplexed final cyclopentenone. Thus, cobalt complex 137 would lead to 138 were both metal clusters would interact giving intermediate 139 which would evolve in the usual way to the final product (Scheme 42) [149]. These systems have been obtained later by Chung s group using cobalt nanoparticles as commented above (Sect. 2.4) [131]. [Pg.234]

This review has already indicated numerous applications of dicobalt-alkyne complexes in organic synthesis. Like the Nicholas reaction (see Section II,D), the Pauson-Khand reaction has seen widespread use.175 This reaction is a three-component cycloaddition of alkynes with alkenes and carbon monoxide which occurs in the presence of octacarbonyldicobalt to afford cyclopentenones, as shown in Eq. (16). [Pg.117]

The Pauson-Khand Cycloaddition Reaction for Synthesis of Cyclopentenones... [Pg.270]


See other pages where Cyclopentenone synthesis cycloaddition is mentioned: [Pg.1037]    [Pg.222]    [Pg.22]    [Pg.180]    [Pg.115]    [Pg.26]    [Pg.222]    [Pg.443]    [Pg.456]    [Pg.121]    [Pg.149]    [Pg.173]    [Pg.35]    [Pg.202]    [Pg.26]    [Pg.197]    [Pg.128]    [Pg.285]    [Pg.770]   


SEARCH



Cycloaddition reactions cyclopentenone synthesis

Cyclopentenone synthesis

Cyclopentenones, synthesis

Synthesis cycloaddition

© 2024 chempedia.info