Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cycloolefins catalysts

The results of ROMP of dicyclopentadiene with the catalysts A, B and C at different conditions demonstrate that yields and the molecular weights of the polydicyclopentadienameres are influenced by the catalysts, the molar ratio of cycloolefin/catalyst and the solvents which were used, Table 4. [Pg.323]

Depending on the type of catalyst used, polymerization of cycloolefins proceeds through either ring opening or by opening of the double bond with the preservation of the ring. [Pg.430]

Ring-Opening Polymerization. Ring-opening polymerization of cycloolefins in the presence of tungsten- or molybdenum-based catalysts proceeds by a metathesis mechanism (67,68). [Pg.430]

Metallocene Catalysts. Polymerization of cycloolefins with Kaminsky catalysts (combinations of metallocenes and methylaluminoxane) produces polymers with a completely different stmcture. The reactions proceeds via the double-bond opening in cycloolefins and the formation of C—C bonds between adjacent rings (31,32). If the metallocene complexes contain bridged and substituted cyclopentadienyl rings, such as ethylene(hisindenyl)zirconium dichloride, the polymers are stereoregular and have the i j -diisotactic stmcture. [Pg.431]

Since the last edition several new materials have been aimounced. Many of these are based on metallocene catalyst technology. Besides the more obvious materials such as metallocene-catalysed polyethylene and polypropylene these also include syndiotactic polystyrenes, ethylene-styrene copolymers and cycloolefin polymers. Developments also continue with condensation polymers with several new polyester-type materials of interest for bottle-blowing and/or degradable plastics. New phenolic-type resins have also been announced. As with previous editions I have tried to explain the properties of these new materials in terms of their structure and morphology involving the principles laid down in the earlier chapters. [Pg.927]

The ring opening of cycloolefins is also possible with certain coordination catalysts. This simplified example shows cyclopentene undergoing a first-step formation of the dimer cyclodecadiene, and then incorporating additional cyclopentene monomer units to produce the solid, rubbery polypentamer ... [Pg.315]

This process is quite unexpected for another reason. The cyclobutene ring is highly strained, making this monomer one of the most easily polymerized of all the cycloolefins. Thus, the variety of catalysts effective for cyclobutene polymerization is much broader than that effective for metathesis of low-strained cycloolefins and acyclic olefins (73). Therefore, the recovery of monomeric cyclobutene rather than its respective polymer is remarkable and indicates the lack of substantial metathesis activity in the above retrocarbenation system. [Pg.467]

Isomerization of cycloolefins has been carried out using base catalysis. Sodium-organosodium catalysts were used by Pines and Eschinazi (7) for isomerizing 1-, 2-, and 3-p-menthenes the same distribution of 1-, 3-, and 8(9)-p-menthenes was obtained from each of the starting materials (B). [Pg.121]

Simple monoolefins and cycloolefins react in the presence of base catalysts under conditions similar to those used for base-catalyzed alkylation. The... [Pg.142]

For example, it is possible to synthesize isotactic as well as syndiotactic polypropylene in high configurational purity and high yields. The same holds for syndiotactic polystyrene. Furthermore, metallocene catalysts open the possibility to absolutely new homopolymers and copolymers like, e.g., cycloolefin copolymers (COG) and even (co)polymers of polar monomers.The simplest metallocene catalyst consists of two components. The first one is a n-complex (the actual metallocene) that can be bridged via a group X and therefore can become chiral ... [Pg.228]

Polycycloolefins are prepared by ring opening metathesis polymerization (ROMP) using transition metal catalysts [31], By far the most commonly studied monomer is dicyclopenta-diene (Fig. 1.7). Cycloolefins with high ring strains like norbomenes and their analogs polymerize very fast and the polymerizations are quite exothermic. Metathesis catalyst systems tend to be sensitive to the presence of polar compounds and the polymerization rates... [Pg.44]

An example of such a catalyst system is racemic isopropylene bis(l-indenyl) zirconium dichloride in combination with an alumi-noxane (21). The reaction is carried out in hydrocarbon solvents, e.g., toluene. A solution of norbornene in toluene with the catalyst is degassed and then pressurized with ethene. The polymerization is carried out while stirring at 70°C under constant ethylene pressure at 18 bar. After completion, the polymer is precipitated in acetone and filtered (21). The cycloolefin copolymers obtained in this way have a high thermal shape stability and it is possible to use the polymers as thermoplastic molding compositions. [Pg.47]

Conventional processes for preparing COCs have some common problems. The conversion of the cycloolefin may be low and further, a high amount of ethylene incorporated results in unsatisfactory low glass transition temperatures. Catalyst compositions have been developed in order to obtain materials with high glass transition temperatures (26). Examples are shown in Table 2.3. These catalysts are used for the copolymerization of ethene and norbornene. [Pg.47]

Reduction. Benzene can be reduced to cyclohexane [110-82-7], C5H12, or cycloolefins. At room temperature and ordinary pressure, benzene, either alone or in hydrocarbon solvents, is quantitatively reduced to cyclohexane with hydrogen and nickel or cobalt (14) catalysts. Catalytic vapor-phase hydrogenation of benzene is readily accomplished at about 200°C with nickel catalysts. Nickel or platinum catalysts are deactivated by the presence of sulfur-containing impurities in the benzene and these metals should only be used with thiophene-free benzene. Catalysts less active and less sensitive to sulfur, such as molybdenum oxide or sulfide, can be used when benzene is contaminated with sulfur-containing impurities. Benzene is reduced to 1,4-cydohexadiene [628-41-1], C6HS, with alkali metals in liquid ammonia solution in the presence of alcohols (15). [Pg.39]

In the early 1990s supported metallocenes were introduced to enable gas phase polymerisation. Also ethene/a-olefin copolymers with high comonomer content, cycloolefin copolymers and ethene-styrene interpolymers became available. In 1990 Stevens at Dow [22] discovered that titanium cy-clopentadienyl amido compounds (constrained geometry catalysts) are very beneficial for the copolymerisation of ethene and long-chain a-olefins. [Pg.3]

Coordination polymerisation via re complexes comprises polymerisation and copolymerisation processes with transition metal-based catalysts of unsaturated hydrocarbon monomers such as olefins [11-19], vinylaromatic monomers such as styrene [13, 20, 21], conjugated dienes [22-29], cycloolefins [30-39] and alkynes [39-45]. The coordination polymerisation of olefins concerns mostly ethylene, propylene and higher a-olefins [46], although polymerisation of cumulated diolefins (allenes) [47, 48], isomerisation 2, co-polymerisation of a-olefins [49], isomerisation 1,2-polymerisation of /i-olcfins [50, 51] and cyclopolymerisation of non-conjugated a, eo-diolefins [52, 53] are also included among coordination polymerisations involving re complex formation. [Pg.11]

The same group of coordination polymerisations in which alkene undergoes re complex formation with the metal atom includes the copolymerisation of ethylene, a-olefins, cycloolefins and styrene with carbon monoxide in the presence of transition metal-based catalysts [54-58], In this case, however, the carbon monoxide comonomer is complexed with the transition metal via the carbon atom. Coordination bond formation involves the overlapping of the carbon monoxide weakly antibonding and localised mostly at the carbon atom a orbital (electron pair at the carbon atom) with the unoccupied hybridised metal orbitals and the overlapping of the filled metal dz orbitals with the carbon monoxide re -antibonding orbital (re-donor re bond) [59], The carbon monoxide coordination with the transition metal is shown in Figure 2.2. [Pg.11]

Another type of metal-carbon bond, the metal carbene bond (with carbene of an electrophilic or nucleophilic character), appears to be the active bond in transition metal-based catalysts for the ring-opening metathesis polymerisation of cycloolefins. Such a bond, which is co-originated with metal by the sp2-hybridized carbon atom, possesses a a, n double bond character (Mt = C) [34,35], The enchainment of the coordinating cycloolefin at the active site... [Pg.15]


See other pages where Cycloolefins catalysts is mentioned: [Pg.230]    [Pg.38]    [Pg.230]    [Pg.38]    [Pg.425]    [Pg.425]    [Pg.429]    [Pg.155]    [Pg.164]    [Pg.449]    [Pg.162]    [Pg.450]    [Pg.451]    [Pg.469]    [Pg.478]    [Pg.115]    [Pg.64]    [Pg.217]    [Pg.226]    [Pg.229]    [Pg.623]    [Pg.624]    [Pg.70]    [Pg.1148]    [Pg.1149]    [Pg.90]    [Pg.109]    [Pg.53]    [Pg.507]    [Pg.4]    [Pg.14]   
See also in sourсe #XX -- [ Pg.223 ]




SEARCH



Cycloolefin

Cycloolefins

Heterogeneous catalysts cycloolefins

© 2024 chempedia.info